

#### **Business Confidential Document**



Screening for PRV Stability

– Inlet Pressure Drop and
The 3 % Rule

78<sup>th</sup> API Refining and Equipment Standards Meeting

April 20-27, 2013

by

Las Vegas

G. A. Melhem, Ph.D.

SALEM OFFICE

93 Stiles Road Salem, New Hampshire 03079 Tel: 603-893-7009 HOUSTON OFFICE

2401 Fountain View, Suite 510 Houston, Texas 77057 Tel: 713-490-5220

MINNEAPOLIS OFFICE

401 North 3<sup>rd</sup> Street, Suite 410 Minneapolis, Minnesota 55401 Tel: 612-338-1669



#### We can conclude the following based on the reasoning presented in this paper

- ➤ Chatter is most likely in vapor service Damage will most likely be due to large mechanical forces caused by the rapid valve closure and/or by PRV reduced flow capacity due to PRV damage. This is especially true for large valves and/or for valves in high pressure service
- Chatter is least likely in flashing two-phase\* flow service and/or in liquid service
- Flutter will almost always occur in liquid service with fast opening or pop action valves
- > Cycling is most likely to occur in flashing two-phase flow service
- ➤ Piping damage is most likely in liquid service due to the large magnitude of the water hammer pressure waves propagated upstream during rapid valve closure (full or partial), i.e. during chatter or during flutter
- ➤ The 3 % inlet pressure is not sufficient to guarantee PRV stability. Stability may need to be assessed and confirmed for all credible scenarios and not necessarily just the one with the highest required flow rate



# All models have limitations, some models are more useful than others



#### The design and evaluation of relief systems is highly constrained

- ➤ The relief system should prevent the failure of the vessel due to overpressure or underpressure
- > Damage to vessel, piping, and valve can be prevented by design
  - Fluid reaction forces, steady and dynamic loading
  - Vibration risk, especially to discharge piping
  - □ Fatigue failure caused by PRV chatter to valve, piping, and piping components
  - Large pressure fluctuations caused by acoustic resonance
  - □ Vortex shedding (singing relief valve problem) for some specific installations
- If we can address all the above requirements, we also need to properly handle and treat the effluent
- Finally we need to properly document the design and keep the documentation up to date and easily accessible



## Typical causes of chatter include

- Excessive inlet pressure loss
- Excessive backpressure
- Oversized valve
- ▶ Bad installation



To determine if a "relief system" will operate in a stable manner (chatter and flutter free) we need to consider important system time constants and how they interact

- Valve time constant
  - ☐ How fast does a pressure relief device close and open?
- Vessel or pressure source time constant
  - How fast does a vessel de-pressure and re-pressure after a pressure relief device opens and re-seats?
- Inlet line time constant
  - □ How long does it take for a pressure wave to propagate upstream from a pressure relief device to the pressure source and back?
- Outlet line time constant
  - □ Acoustic barriers may be established due to "body bowl choking"
  - Note that acoustic barriers, such as the presence of control valves, change in diameter, etc. can cause standing waves that can lead to acoustic coupling or resonance with relief systems components



#### How can we simply establish if PRV stability is an issue for a specific installation?

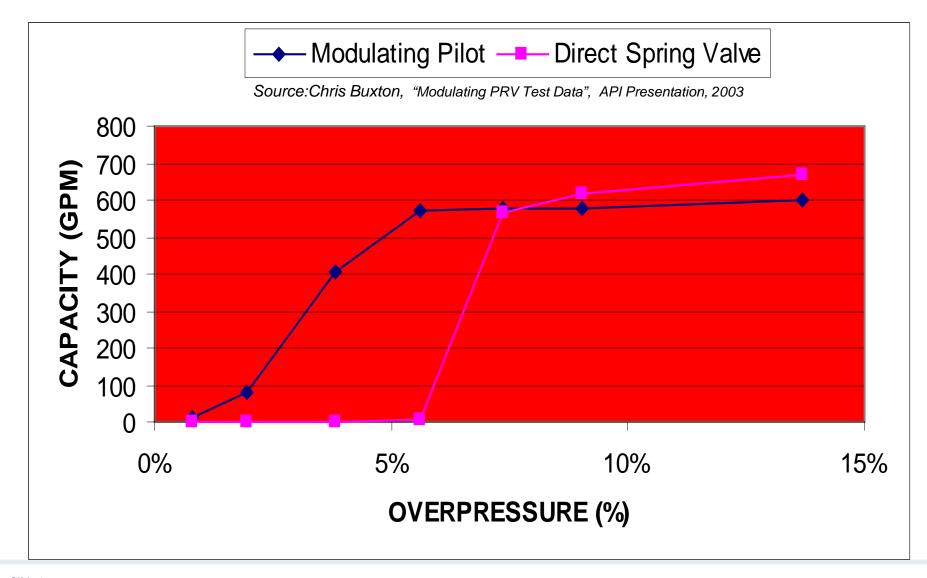
- It has been shown that very long inlet lines will result in stable PRV operation.
- It has been shown that a PRV will go through a short period of instability during closing and by inference during opening as the valve gets to full lift
- > During valve closing, if the inlet line is short enough, the returning compression wave can keep the valve open
- It is expected that the coefficient of restitution and sticktion force can change the calculated valve response
- > A slower valve may be better
- Low flow rates cause less damping for the relief system and are more problematic
- > Resonance amplification factors can be very large, 50 to 100 times
- > Stable PRV installations are required/implied by ASME and API



#### The 3 % inlet pressure loss rule is not sufficient to guarantee PRV stability

- More is needed to confirm a stable installation...
  - □ The inlet line/fluid fundamental frequency should be sufficiently decoupled from the valve frequency to prevent resonance/harmonics
  - □ The total pressure drop, wave and frictional, should be less than the valve blowdown
  - □ The valve blowdown should be carefully established and verified
- Reduced flow rates due to excessive pressure drop must still provide sufficient relief capacity
- The impact of longer relief durations on dispersion, fire, and explosion risk needs to be evaluated
- ➤ The analysis in this presentation is restricted to inlet pressure loss at constant conditions. Dynamics need to be considered as source pressure increases from P<sub>set</sub> to full open pressure (see earlier presentations on dynamics).

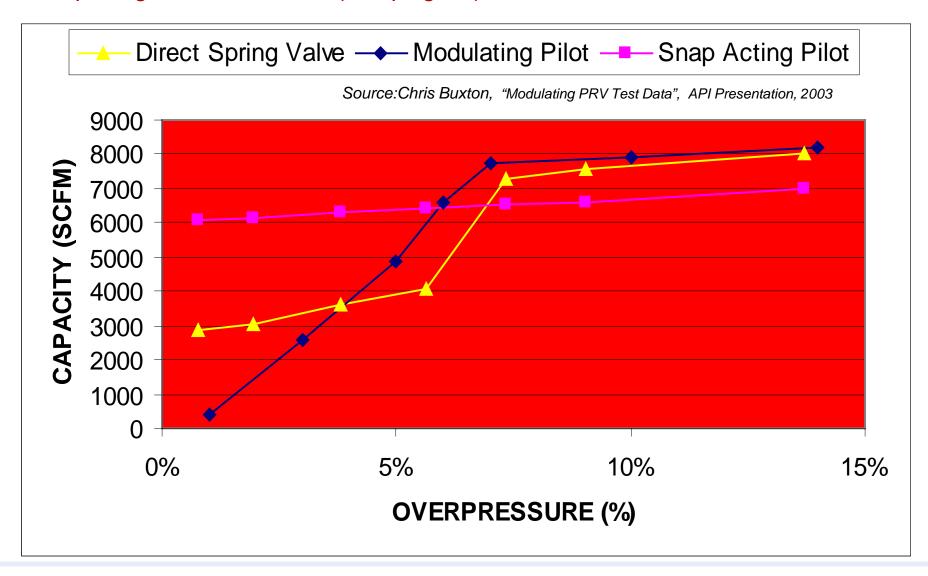



#### First, some key assumptions...

- > Fast opening and/or pop action valve
- > PRV opening time can be different from closing time
- ➤ Mass flow rate is at stable open position 10 % overpressure for example
- Mass flow rate varies linearly with time
- > Mass flow rate during PRV closing is 80 % of mass flow rate during opening
- Largest upstream pressure fluctuations occur during valve opening or closure
- > Rigid piping supports, i.e. piping supports do not influence speed of sound
- Backpressure is within normal limits, i.e. does not influence stability
- Valve blowdown is known or can be verified






#### Liquid opening test results - 2J3 (250 psig set)







#### Gas opening test results - 2J3 (250 psig set)





#### How does one estimate the valve opening and closing times?

- > Typically ranges from 25 to 50 milliseconds
- Get it from the manufacturer
- Get total valve weight from manufacturer catalogue and then estimate the disk and spring mass in motion using simple equations
- Calculate valve ideal opening / closing time
- Use computational PRV test bench to simulate opening and closing of PRV
  - SuperChems
  - □ API/PERF model
  - □ ?
- Literature correlations



#### Estimate the weight in motion of PRV spring/disk system

$$m = \text{disk mass} + \text{spring mass} / 3$$
  

$$\approx \frac{[1.8 + 0.022 \times W] \times W}{100} \text{ yields m in lbs}$$

W = PRV body weight with 150 psi flange in lbs





#### Establish the PRV spring constant

$$k \approx \left[\frac{A_d}{A_n}\right] \left[\frac{P_{open}}{P_{set}}\right] \frac{P_{set}A_n}{X_{max}} \approx \frac{1.1P_{set}A_d}{X_{max}}$$
 yields k in force/length

One can also use the equation proposed by Grolmes

$$k \approx 5.15 P_{set} \sqrt{A_{API}}$$
 yields k in lbf/in,  $P_{set}$  in psig,  $A_{API}$  in in<sup>2</sup>

Note:

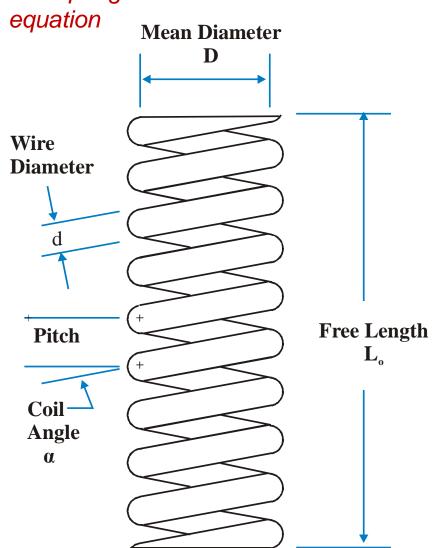
Spring constant varies linearly with axial distance and does not change with temperature. Gravity force ignored.

$$A_d$$
 = Disk area  
 $A_n$  = Nozzle area  
 $P_{open}$  = PRV full open pressure, 1.1x $P_{set}$   
 $X_{max}$  = Maximum lift

Source: M. A. Grolmes, "DIERS Odds and Ends – PRV Stability", Parts 1 through 5, Multiple DIERS Users Group Meetings



Approximate the valve opening and closing times based on the spring constant and the spring/disk mass in motion


$$f_{nat} = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$
 yields  $f_{nat}$  in Hz (cycles/second)

$$t_{open} \simeq \frac{\sqrt{\frac{2}{A_d} - 1}}{2\pi} \left[ \frac{1}{f_{nat}} \right]$$
 yields time in seconds

Source: M. A. Grolmes, "DIERS Odds and Ends - PRV Stability", Parts 1 through 5, Multiple DIERS Users Group Meetings



The spring constant can also be calculated for a helical spring using a more detailed



$$k = \frac{Gd}{8C^3 N_a}$$

N<sub>a</sub> is the number of active coils

G is the modulus of torsion or rigidity

C is the diameter modulus; C = D/d

D is the mean diameter

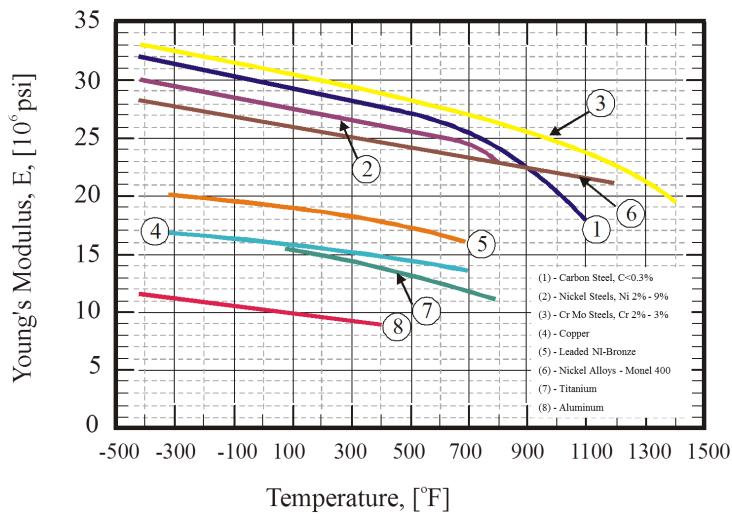
d is the coil diameter

Source: M. A. Grolmes, "DIERS Odds and Ends - PRV Stability", Parts 1 through 5, Multiple DIERS Users Group Meetings





#### Typical properties of materials from the literature can be used

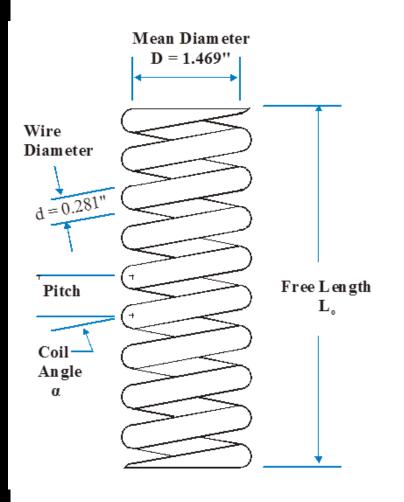

| Material               | E (GPa)  | Poisson's Ratio $\nu$ | $K = \frac{1}{\kappa}$ (GPa) | ho in kg/m3  |
|------------------------|----------|-----------------------|------------------------------|--------------|
| Aluminum               | 69       | 0.33                  |                              |              |
| Brass                  | 78-110   | 0.36                  |                              |              |
| Carbon steel           | 202      | 0.303                 |                              |              |
| Cast iron              | 90-160   | 0.25                  |                              |              |
| Concrete               | 20-30    | 0.15                  |                              |              |
| Copper                 | 117      | 0.36                  |                              |              |
| Ductile iron           | 172      | 0.30                  |                              |              |
| Fibre cement           | 24       | 0.17                  |                              |              |
| High carbon steel      | 210      | 0.295                 |                              |              |
| Inconel                | 214      | 0.29                  |                              |              |
| Mild steel             | 200-212  | 0.27                  |                              |              |
| Nickel steel           | 213      | 0.31                  |                              |              |
| Plastic / Perspex      | 6.0      | 0.33                  |                              |              |
| Plastic / Polyethylene | 0.8      | 0.46                  |                              |              |
| Plastic / PVC rigid    | 2.4-2.75 |                       |                              |              |
| Stainless steel 18-8   | 201      | 0.30                  |                              |              |
| Water - fresh          |          |                       | 2.19                         | 999 at 20 C  |
| Water - sea            |          |                       | 2.27                         | 1025 at 15 C |

E is typically referred to as Young's modulus of elasticity G is typically referred to as modulus of torsion,  $G = \frac{1}{2} \frac{E}{1+\nu}$ 





#### Note that the valve materials properties change with temperature




Source: M. A. Grolmes, "DIERS Odds and Ends - PRV Stability", Parts 1 through 5, Multiple DIERS Users Group Meetings



 $k = \frac{Gd}{8C^3 N_{\odot}}$ 

#### An example – spring from Farris 26 FA 10 – 120. $P_{set}$ = 180 psig



$$N_a = 8$$

$$C = \frac{D}{d} = 5.288$$

$$E = 205 \times 10^9 \text{ GPa}$$

$$v = 0.31$$

$$G = 78.2 \times 10^9 \text{ GPa}$$

Spring Weight = 360 g

Other Parts in Motion Weight = 435 g

Total Weight in Motion = 435 + 360 / 3 = 555 g

$$k = \frac{11.35 \times 10^6 \times 0.281}{8 \times 5.288^3 \times 8} = 349 \frac{lbf}{in}$$
 or 61294 N/m

$$f_n = \frac{1}{2\pi} \sqrt{\frac{k}{m}} = \frac{1}{2\pi} \sqrt{\frac{61294}{0.555}} = 53 \,\text{Hz}$$



## 4P6 Farris data reported by Grolmes and later analyzed by Melhem

| 27 | Minimum lift. in                              | 0           |                        |                       |
|----|-----------------------------------------------|-------------|------------------------|-----------------------|
| 28 | Maximum lift. in                              | 0.901       |                        |                       |
| 29 |                                               |             |                        |                       |
| 30 | Inlet line nominal pipe size                  | 4           | 4                      |                       |
| 31 | Inlet line piping schedule                    | 40          | _                      |                       |
| 32 | Inlet flange pressure rating and class, bara  | 11.3554     | ANSI                   |                       |
| 33 |                                               |             |                        |                       |
| 34 | Outlet line nominal pipe size                 | 6           | 6                      |                       |
| 35 | Outlet line piping schedule                   | 40          |                        |                       |
|    | Outlet flange pressure rating and class. bara | 11.3554     | ANSI                   |                       |
| 37 |                                               |             |                        |                       |
| 38 | Flow Type                                     | Gas / Vapor | Liquid                 | Two Phase             |
| 39 | Discharge Coefficient                         | 0.95000     | 0.65000                | 0.95000               |
| 40 | Slip ratio multiplier zeta                    |             |                        | 1.00000               |
| 41 | Slip ratio exponent eta                       |             |                        | 0.00010               |
| 42 | Actual orifice flow area. in2                 | 6.41080     |                        |                       |
| 43 | Design orifice flow area. in2                 | 6.41080     | Design/Actual >>>      | 1.0000                |
| 44 | Letter                                        | P           | Beta ratio >>>         | 0.7096                |
| 45 | Flow Area Basis                               | Red Book    |                        |                       |
| 46 | Set pressure. bara                            | 4.4606      | Will first open at >>> | 4.8054 bara           |
| 47 | Reset pressure. bara                          | 4.2193      |                        |                       |
| 48 | Maximum blowdown. %                           | 14.000      | Actual blowdown >>>    | 7.000 %               |
| 49 |                                               |             |                        | Source: SuperChems v7 |



## 4P6 Farris data reported by Grolmes and later analyzed by Melhem

| 61 Valve dynamics parameters [Advanced users only]                 |         |
|--------------------------------------------------------------------|---------|
| 62                                                                 |         |
| 63 Flow area at the inner seat / minimum flow area                 | 1.000   |
| 64 Disk backpressure area / minimum flow area                      | 1.300   |
| 65 Disk area enclosed by bellows / minimum flow area               | 0.000   |
| 66                                                                 |         |
| 67 Valve mass in motion. 1b                                        | 11.54   |
| 68 Spring constant. lbf/in                                         | 571.96  |
| 69 Critical damping ratio                                          | 0.200   |
| 70 Coefficient of restitution                                      | 0.010   |
| 71                                                                 |         |
| 72 Fluid exit angle (from vertical) at full lift. degrees          | 20.00   |
| 73 Force conversion efficiency for valve seat top surface pressure | 0.60    |
| 74 Discharge coefficient factor                                    | 0.25    |
| 75                                                                 |         |
| 76 Undamped natural period. s                                      | 0.0454  |
| 77 Undamped natural frquency. Hz                                   | 22.0173 |
| 78                                                                 |         |
| 79 User defined opening time. ms                                   | 27.0000 |
| 80 User defined closing time. ms                                   | 38.0000 |
|                                                                    |         |



#### Calculate the 4P6 spring/mass data using the simple equations outlined earlier

$$W = 190 lb from catalogue$$

$$m = \frac{[1.8 + 0.022 \times 190] \times 190}{100} = 11.36 \text{ lb or } 5.15 \text{ kg}$$

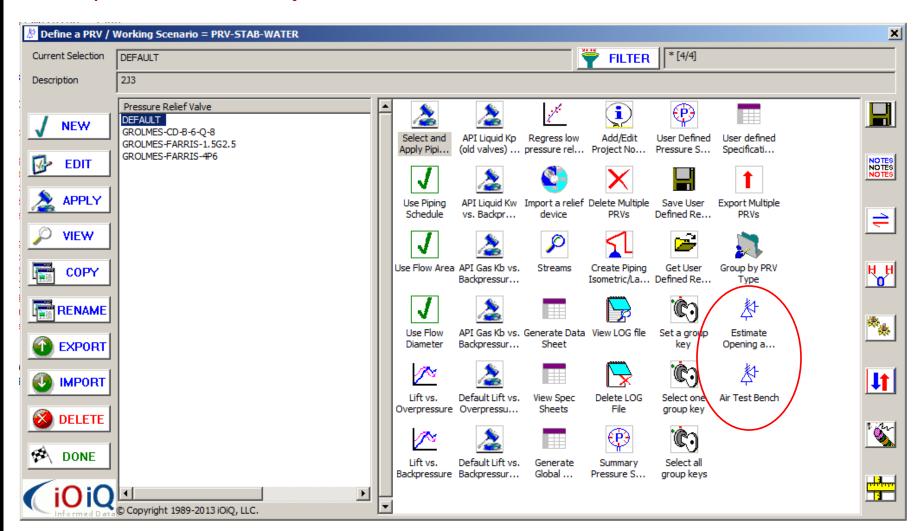
$$\left[\frac{A_d}{A_n}\right] \approx 1.30, X_{\text{max}} = 0.90 \text{ in and } A_n = 7.087 \text{ in}^2 \text{from Red Book}$$

$$k = \frac{1.1P_{set}A_d}{X_{max}} = \frac{1.1 \times 4.46 \times 10^5 \times 1.3 \times 0.004572}{0.9 \times 0.0254} = 127,556 \text{ N/m or } 728 \text{ lbf/in}$$

$$\approx 5.15 P_{set} \sqrt{A_{API}} \approx 5.15 \times 50 \times \sqrt{6.48} = 655 \text{ lbf/in}$$

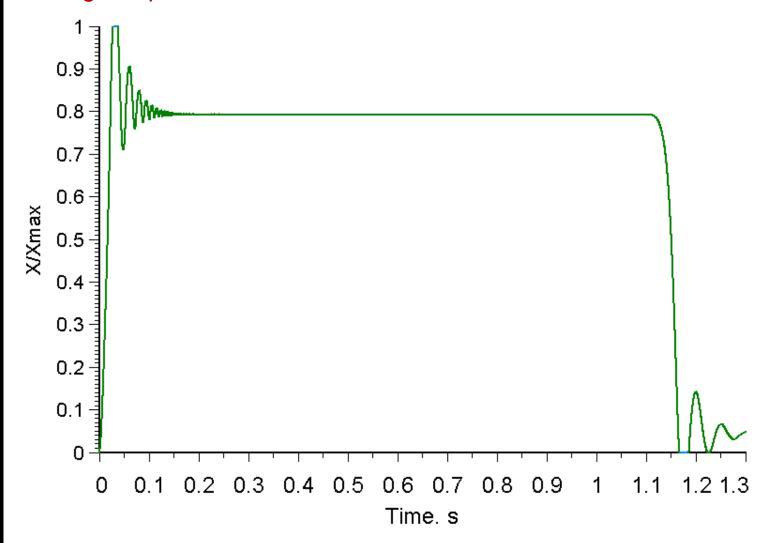


Calculate the 4P6 frequency using the simple spring/mass equations outlined earlier


$$f_{nat} = \frac{1}{2\pi} \sqrt{\frac{k}{m}} = \frac{1}{2\pi} \sqrt{\frac{127,556}{5.15}} = 25 \,\text{Hz}$$

$$t_{open} \approx \frac{\sqrt{\frac{2}{A_d} - 1}}{2\pi} \left[ \frac{1}{f_{nat}} \right] \approx \frac{\sqrt{\frac{2}{1.3 - 1}}}{2\pi} \left[ \frac{1}{25} \right] = 0.0164 \text{ s}$$

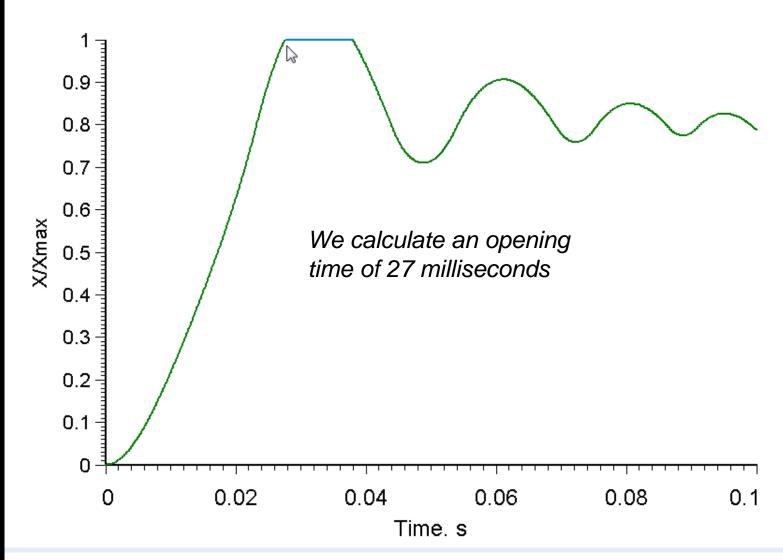
$$t_{close} \approx t_{open} = 16.5 \text{ milliseconds}$$




#### The SuperChems PRV object includes two useful tools



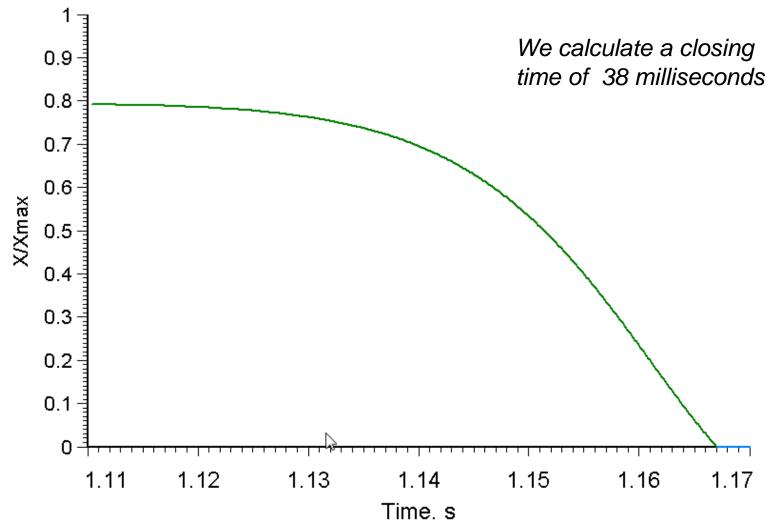



Use the PRV test bench in SuperChems to calculate the opening and closing times starting at a pressure of 1.1xPset





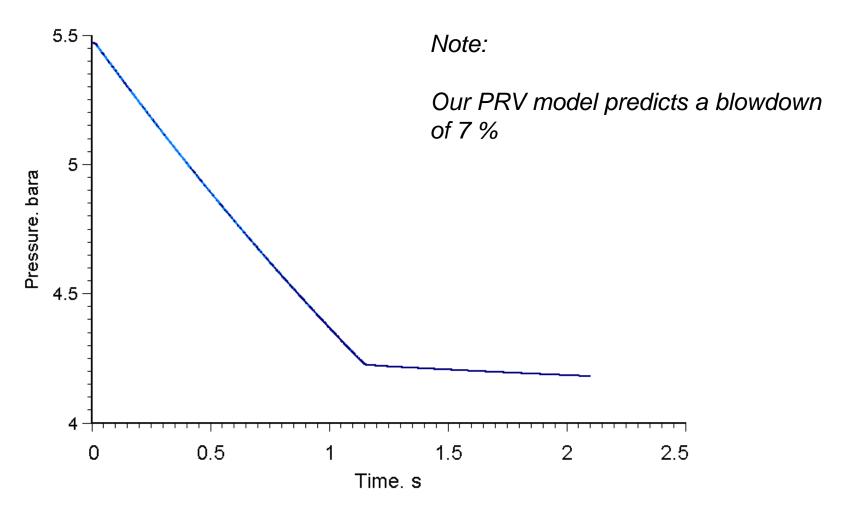



Use the PRV test bench in SuperChems to calculate the opening and closing times








Use the PRV test bench in SuperChems to calculate the opening and closing times







## Use the PRV test bench in SuperChems to confirm the valve blowdown





When a PRV opens or closes, we need to approximate the pressure drop caused by the expansion / compression wave in addition to any irrecoverable pressure drop

$$t_{wave} = 2\frac{L_p}{c_0}$$

$$\tau = \min \left[ \frac{t_{wave}}{t_{valve}}, 1 \right]$$
 where  $t_{valve}$  is the opening or closing time

$$\Delta P_{wave} = \tau \frac{c_0 \dot{M}}{A_p} + \tau^2 \frac{\dot{M}^2}{2\rho_0 A_P^2}$$
 where  $0 \le \tau \le 1$ 

$$\Delta P_{f,wave} = \tau^2 \Delta P_f$$
 where  $0 \le \tau \le 1$ 

Source: Singh, ASME, 1983



#### Use the 4P6 PRV we considered earlier in a simple relief line arrangement

- ➤ 4 inch inlet line, 1 meter long, ½ velocity head loss for entrance
- ➤ 6 inch discharge line, 5 meters long, 1 velocity head loss for exit
- Vapor flow
  - $\square$  P = 1.1xPset, T= 25 C, Methane
- Liquid Flow
  - □ P = 1.1xPset, T=25 C, Water
- ➤ Two Phase Flow
  - □ P = 1.1xPset, T=Saturation, Quality = 0.001, Water



## All Vapor Flow Solution, L = 1 m

| 33  |                                                                 |                |                |                 |                  |           |
|-----|-----------------------------------------------------------------|----------------|----------------|-----------------|------------------|-----------|
| 34  | Relief device found at segment 2                                | GROLMES-FARRIS | -4P6: NOT SPE  | CIFIED. Bellow  | s. Service= Twop | hase      |
| 35  | Last iteration Kb correction                                    | 1.00           |                |                 |                  |           |
| 36  | Pressure at device inlet. bara                                  | 4.64           |                |                 |                  |           |
| 37  | % inlet pressure drop relative to actual set point              | 4.94           |                |                 |                  |           |
| 38  | % irreversible inlet pressure drop relative to actual set point | 4.46           | ** WARNING: In | nlet pressure ( | drop exceeds 3.0 | ) percent |
| 39  | % back pressure relative to actual set point                    | 6.63           |                |                 |                  |           |
| 40  |                                                                 |                |                |                 |                  |           |
|     | Segment #, Type, Name                                           | Start          | End            | Length, in      | Exit             | Exit/Flow |
| 41  |                                                                 | Elevation. in  | Elevation. in  |                 | Diameter. in     | Area. in2 |
| 12  | 001, Piping Segment, 4 INCH INLET                               | 0.0000         | 0.0000         | 39.3701         | 4.0260           | 12,7303   |
|     | 002, Pressure Relief Valve (orifice), GROLMES-FARRIS-4P6        | 0.0000         | 19.8750        |                 | 2.8570           | 6.4108    |
|     | 003, Piping Segment, 6 INCH OUTLET                              | 19.8750        | 19.8750        |                 | 6.0650           | 28.8903   |
| 45  | oos, riping segment, o inch oother                              | 19.0730        | 19.0730        | 3.0000          | 0.0030           | 20.0903   |
|     | PRV Inlet Pressure Drop Stability Analysis                      | Opening        | Closing        |                 |                  |           |
|     | Pressure required for, bara                                     | 4.461          | 4.219          |                 |                  |           |
| _   | Blowdown, bara                                                  | 0.241          | 0.241          |                 |                  |           |
|     | Blowdown in %                                                   | 7.000          | 7.000          |                 |                  |           |
|     |                                                                 | 0.287          | 0.162          |                 |                  |           |
|     | Acoustic pressure drop during, bara                             | 0.207          |                |                 |                  |           |
|     | Irreverisble pressure drop during, bara                         | 0.004          |                |                 |                  |           |
|     | Total pressure drop during, bara                                |                | 0.163          |                 |                  |           |
| _   | Blowdown required for stable operation in % during              | 8.457          | 4.731          | _               |                  |           |
|     | Pressure at PRV inlet during, bara                              | 4.514          |                |                 |                  |           |
| _   | Time required for. milliseconds                                 | 27.000         | 38.000         |                 |                  |           |
|     | Wave time during, milliseconds                                  | 4.492          | 4.492          | _               |                  |           |
| _   | Wave time / time required for                                   | 0.166          | 0.118          | <del></del>     |                  |           |
| _   | Resonance/Harmonics during                                      | Not Likely     |                |                 |                  |           |
|     | Chatter, flutter, or cycle during                               | Not Likely     | Not Likely     |                 |                  |           |
| 60  |                                                                 |                |                |                 |                  |           |
|     | Segment #, Type, Name                                           | D/t            |                | Limit SPL. dB   | SPL              | Vibration |
| 61  |                                                                 |                | dB             |                 | Difference.      | Risk?     |
| -1- | <u> </u>                                                        |                |                |                 |                  | 01        |
|     |                                                                 |                |                |                 | Source: Super    | Cnems v/  |



## All Liquid Flow Solution, L = 1 m

| 28 |                                                                 |                 |                  |                |                   |            |
|----|-----------------------------------------------------------------|-----------------|------------------|----------------|-------------------|------------|
| 29 | Relief device found at segment 2                                | GROLMES-FARRIS- | 4P6: NOT SPECIFI | ED. Bellows.   | Service= Twophas  | e          |
| 30 | Last iteration Kb correction                                    | 1.00            |                  |                |                   |            |
| 31 | Pressure at device inlet. bara                                  | 4.58            |                  |                |                   |            |
| 32 | % inlet pressure drop relative to actual set point              | 6.44            |                  |                |                   |            |
| 33 | % irreversible inlet pressure drop relative to actual set point | 6.44            | ** WARNING: Inl  | et pressure dr | op exceeds 3.0 j  | percent    |
|    | % back pressure relative to actual set point                    | 1.53            |                  |                |                   |            |
| 35 |                                                                 |                 |                  |                |                   |            |
|    | Segment #, Type, Name                                           | Start           | End Elevation.   | Length, in     | Exit              | Exit/Flow  |
| 36 |                                                                 | Elevation. in   | in               |                | Diameter. in      | Area. in2  |
| 27 |                                                                 |                 |                  |                | 4 0000            | 10 5000    |
|    | 001, Piping Segment, 4 INCH INLET                               | 0.0000          |                  | 39.3701        | 4.0260            | 12.7303    |
|    | 002, Pressure Relief Valve, (orifice) GROLMES-FARRIS-4P6        | 0.0000          |                  | 19.8750        |                   | 6.4108     |
|    | 003, Piping Segment, 6 INCH OUTLET                              | 19.8750         | 19.8750          | 5.0000         | 6.0650            | 28.8903    |
| 40 |                                                                 | 0               | <b>61</b>        |                |                   |            |
|    | PRV Inlet Pressure Drop Stability Analysis                      | Opening         | Closing          |                |                   |            |
|    | Pressure required for. bara                                     | 4.461           |                  | $\leftarrow$   |                   |            |
|    | Blowdown. bara                                                  | 0.241           | 0.241            |                |                   |            |
|    | Blowdown in %                                                   | 7.000           | 7.000            |                |                   |            |
|    | Acoustic pressure drop during, bara                             | 6.035           | 3.431            |                |                   |            |
|    | Irreverisble pressure drop during, bara                         | 0.000           | 0.000            |                |                   |            |
|    | Total pressure drop during. bara                                | 6.035           | 3.431            |                |                   |            |
|    | Blowdown required for stable operation in % during              | 175.072         |                  |                |                   |            |
|    | Pressure at PRV inlet during. bara                              | -1.230          | 1.375            | <del></del>    |                   |            |
|    | Time required for. milliseconds                                 | 27.000          |                  |                |                   |            |
| 51 | Wave time during. milliseconds                                  | 0.533           | 0.533            |                |                   |            |
| 52 | Wave time / time required for                                   | 0.020           | 0.014            |                |                   |            |
| 53 | Resonance/Harmonics during                                      | Not Likely      | Not Likely       |                |                   |            |
|    | Chatter, flutter, or cycle during                               | Flutter Likely  | Flutter Likely   |                |                   |            |
| 55 |                                                                 |                 |                  |                |                   |            |
|    | Segment #, Type, Name                                           | D/t             |                  | Limit SPL. dB  | SPL               | Vibration  |
| 56 |                                                                 |                 | dB               |                | Difference.<br>dB | Risk?      |
|    | · · · · · · · · · · · · · · · · ·                               |                 |                  |                | Source: Supe      | erChems v7 |



## Two-Phase Flow Solution, L = 1 m

| 36 | Relief device found at segment 2                                | GROLMES-FARRIS | S-4P6: NOT SPE | CIFIED; Bellow | s; Svc= Twophase  | e         |
|----|-----------------------------------------------------------------|----------------|----------------|----------------|-------------------|-----------|
| 37 | Last iteration Kb correction                                    | 1.00           |                |                |                   |           |
| 38 | Pressure at device inlet. bara                                  | 4.78           |                |                |                   |           |
| 39 | % inlet pressure drop relative to actual set point              | 0.63           |                |                |                   | ļ         |
| 40 | % irreversible inlet pressure drop relative to actual set point | 0.52           |                |                |                   |           |
| 41 | % back pressure relative to actual set point                    | 20.21          |                |                |                   |           |
| 42 | 1                                                               |                |                |                |                   | !         |
|    | Segment #, Type, Name                                           | Start          | End            | Length, in     | Exit              | Exit/Flow |
| 43 |                                                                 | Elevation. in  | Elevation. in  |                | Diameter, in      | Area. in2 |
|    |                                                                 |                |                |                |                   |           |
|    | 001, Piping Segment, 4 INCH INLET                               | 0.0000         |                | ķķ.            |                   | 12.7303   |
|    | 002, Pressure Relief Valve, (orifice) GROLMES-FARRIS-4P6        | 0.0000         |                |                |                   | 6.4108    |
|    | 003, Piping Segment, 6 INCH OUTLET                              | 19.8750        | 19.8750        | 5.0000         | 6.0650            | 28.8903   |
| 47 |                                                                 |                |                |                |                   | ļ         |
|    | PRV Inlet Pressure Drop Stability Analysis                      | Opening        | Closing        |                |                   | !         |
|    | Pressure required for, bara                                     | 4.461          | 4.219          | -              |                   | ļ         |
|    | Blowdown. bara                                                  | 0.241          | 0.241          |                |                   |           |
| 51 | Blowdown in %                                                   | 7.000          | 7.000          |                |                   |           |
| 52 | Acoustic pressure drop during. bara                             | 0.129          | 0.099          |                |                   |           |
| 53 | Irreverisble pressure drop during, bara                         | 0.018          | 0.011          |                |                   |           |
| 54 | Total pressure drop during, bara                                | 0.147          | 0.111          |                |                   |           |
| 55 | Blowdown required for stable operation in % during              | 4.258          | 3.219          |                |                   | ļ         |
| 56 | Pressure at PRV inlet during. bara                              | 4.659          | 4.694          | <del></del>    |                   |           |
| 57 | Time required for. milliseconds                                 | 27.000         | 38.000         |                |                   |           |
| 58 | Wave time during. milliseconds                                  | 320.102        | 320.102        | <del></del>    |                   |           |
| 59 | Wave time / time required for                                   | 1.000          | 1.000          |                |                   |           |
| 60 | Resonance/Harmonics during                                      | Not Likely     | Not Likely     |                |                   |           |
| 61 | Chatter, flutter, or cycle during                               | Not Likely     | Not Likely     |                |                   |           |
| 62 |                                                                 |                |                |                |                   |           |
|    | Segment #, Type, Name                                           | D/t            | Maximum SPL.   | Limit SPL. dB  | SPL               | Vibration |
| 63 |                                                                 |                | dB             |                | Difference.<br>dB | Risk?     |
|    |                                                                 |                |                |                | Source: SuperC    | Chems v7  |



#### Let's make the valve chatter!

➤ Increase inlet line length to 5 m



## *Vapor Flow Solution,* L = 5 m

| 34 | Relief device found at segment 2                                | GROLMES-FARRIS- | -4P6: NOT SPECIFI | IED. Bellows.  | Service= Twopha | se        |
|----|-----------------------------------------------------------------|-----------------|-------------------|----------------|-----------------|-----------|
| 35 | Last iteration Kb correction                                    | 1.00            |                   |                |                 | !         |
| 36 | Pressure at device inlet. bara                                  | 4.49            |                   |                |                 | !         |
| 37 | % inlet pressure drop relative to actual set point              | 9.27            |                   |                |                 | ,         |
|    | % irreversible inlet pressure drop relative to actual set point | 8.40            | ** WARNING: Inle  | et pressure dr | op exceeds 3.0  | percent   |
|    | % back pressure relative to actual set point                    | 6.16            |                   | -              |                 | <i></i>   |
| 40 | <u> </u>                                                        |                 |                   |                |                 | ,         |
|    | Segment #, Type, Name                                           | Start           | End Elevation.    | Length. in     | Exit            | Exit/Flow |
| 41 |                                                                 | Elevation, in   | in                |                | Diameter. in    | Area. in2 |
|    |                                                                 |                 |                   |                |                 |           |
|    | 001, Piping Segment, 4 INCH INLET                               | 0.0000          |                   |                |                 | 12.7303   |
|    | 002, Pressure Relief Valve (orifice), GROLMES-FARRIS-4P6        | 0.0000          |                   |                |                 | 6.4108    |
|    | 003, Piping Segment, 6 INCH OUTLET                              | 19.8750         | 19.8750           | 5.0000         | 6.0650          | 28.8903   |
| 45 |                                                                 |                 |                   |                |                 | !         |
|    | PRV Inlet Pressure Drop Stability Analysis                      | Opening         | ·                 |                |                 | !         |
|    | Pressure required for. bara                                     | 4.461           |                   | -              |                 | !         |
|    | Blowdown. bara                                                  | 0.241           |                   |                |                 | !         |
|    | Blowdown in %                                                   | 7.000           |                   |                |                 | !         |
|    | Acoustic pressure drop during. bara                             | 1.514           |                   |                |                 | !         |
|    | Irreverisble pressure drop during. bara                         | 0.200           |                   |                |                 | !         |
|    | Total pressure drop during. bara                                | 1.714           |                   |                |                 | !         |
|    | Blowdown required for stable operation in % during              | 49.731          |                   |                |                 | !         |
|    | Pressure at PRV inlet during. bara                              | 3.091           |                   | <del></del>    |                 |           |
|    | Time required for. milliseconds                                 | 27.000          | 38.000            |                |                 |           |
|    | Wave time during. milliseconds                                  | 22.461          |                   |                |                 | 1         |
|    | Wave time / time required for                                   | 0.832           | 0.591             | <del></del>    |                 |           |
|    | Resonance/Harmonics during                                      | Likely          | Not Likely        |                |                 |           |
|    | Chatter, flutter, or cycle during                               | Chatter Likely  | Flutter Likely    |                |                 |           |
| 60 |                                                                 |                 |                   |                |                 |           |
|    | Segment #, Type, Name                                           | D/t             | Maximum SPL. dB   | Limit SPL. dB  |                 | Vibration |
| 61 |                                                                 |                 |                   |                | Difference.     | Risk?     |
|    |                                                                 |                 |                   |                | dB              |           |
|    |                                                                 |                 |                   |                | Source: Super   | Chems v7  |



## Liquid Flow Solution, L = 5 m

| 29 | Relief device found at segment 2                                | GROLMES-FARRIS-4 | P6: NOT SPECIFI | ED. Bellows. S | ervice= Twophase | e          |
|----|-----------------------------------------------------------------|------------------|-----------------|----------------|------------------|------------|
|    | Last iteration Kb correction                                    | 1.00             |                 |                | -                |            |
|    | Pressure at device inlet. bara                                  | 4.39             |                 |                |                  |            |
|    | % inlet pressure drop relative to actual set point              | 12.14            |                 |                |                  |            |
|    | % irreversible inlet pressure drop relative to actual set point | 12.14            | ** WARNING: Inl | et pressure dr | op exceeds 3.0 p | percent    |
| 34 | % back pressure relative to actual set point                    | 1.42             |                 | _              |                  |            |
| 35 |                                                                 |                  |                 |                |                  |            |
|    | Segment #, Type, Name                                           | Start            | End Elevation.  | Length. in     | Exit             | Exit/Flow  |
| 36 |                                                                 | Elevation. in    | in              |                | Diameter, in     | Area. in2  |
| 07 |                                                                 |                  |                 |                |                  |            |
|    | 001, Piping Segment, 4 INCH INLET                               | 0.0000           | 0.0000          | 196.8504       | 4.0260           | 12.7303    |
|    | 002, Pressure Relief Valve, (orifice) GROLMES-FARRIS-4P6        | 0.0000           | 19.8750         | 19.8750        | 2.8570           | 6.4108     |
|    | 003, Piping Segment, 6 INCH OUTLET                              | 19.8750          | 19.8750         | 5.0000         | 6.0650           | 28.8903    |
| 40 |                                                                 |                  |                 |                |                  |            |
|    | PRV Inlet Pressure Drop Stability Analysis                      | Opening          | Closing         |                |                  |            |
|    | Pressure required for. bara                                     | 4.461            | 4.219           | <del></del>    |                  |            |
|    | Blowdown. bara                                                  | 0.241            | 0.241           |                |                  |            |
|    | Blowdown in %                                                   | 7.000            | 7.000           |                |                  |            |
|    | Acoustic pressure drop during. bara                             | 29.342           | 16.678          |                |                  |            |
|    | Irreverisble pressure drop during, bara                         | 0.004            | 0.001           |                |                  |            |
|    | Total pressure drop during, bara                                | 29.346           | 16.679          |                |                  |            |
|    | Blowdown required for stable operation in % during              | 851.248          | 483.816         |                |                  |            |
|    | Pressure at PRV inlet during, bara                              | -24.540          | -11.874         | $\leftarrow$   |                  |            |
| 50 | Time required for. milliseconds                                 | 27.000           | 38.000          |                |                  |            |
| 51 | Wave time during, milliseconds                                  | 2.663            | 2.663           |                |                  |            |
| 52 | Wave time / time required for                                   | 0.099            | 0.070           | <del></del>    |                  |            |
| 53 | Resonance/Harmonics during                                      | Not Likely       | Not Likely      |                |                  |            |
| 54 | Chatter, flutter, or cycle during                               | Flutter Likely   | Flutter Likely  |                |                  |            |
| 55 |                                                                 |                  |                 |                |                  |            |
| EÇ | Segment #, Type, Name                                           | D/t              | Maximum SPL.    | Limit SPL. dB  | SPL              | Vibration  |
|    |                                                                 |                  |                 |                | Source: Sup      | erChems v7 |



### Two-Phase Flow Solution, L = 5 m

| 36 Relief device found at segment 2                                | GROLMES-FARRT | S-4P6: NOT SPE | CIFIED: Bellow | s: Svc= Twophas        | e.         |
|--------------------------------------------------------------------|---------------|----------------|----------------|------------------------|------------|
| 37 Last iteration Kb correction                                    | 1,00          |                | ,,             | , 510 Ino <u>p</u> 112 | -          |
| 38 Pressure at device inlet. bara                                  | 4.75          |                |                |                        |            |
| 39 % inlet pressure drop relative to actual set point              | 1.57          |                |                |                        |            |
| 40 % irreversible inlet pressure drop relative to actual set point | 1.30          |                |                |                        |            |
| 41 % back pressure relative to actual set point                    | 19.46         |                |                |                        |            |
| 42                                                                 |               |                |                |                        |            |
| Segment #, Type, Name                                              | Start         | End            | Length. in     | Exit                   | Exit/Flow  |
| 43                                                                 | Elevation. in | Elevation, in  |                | Diameter. in           | Area. in2  |
|                                                                    |               |                |                |                        |            |
| 44 001, Piping Segment, 4 INCH INLET                               | 0.0000        |                |                | 4.0260                 | 12.7303    |
| 45 002, Pressure Relief Valve, (orifice) GROLMES-FARRIS-4P6        | 0.0000        |                |                | 2.8570                 | 6.4108     |
| 46 003, Piping Segment, 6 INCH OUTLET                              | 19.8750       | 19.8750        | 5.0000         | 6.0650                 | 28.8903    |
| 47                                                                 | 0             | <b>01</b> /    |                |                        |            |
| 48 PRV Inlet Pressure Drop Stability Analysis                      | Opening       | Å              |                |                        |            |
| 49 Pressure required for. bara                                     | 4.461         |                |                |                        |            |
| 50 Blowdown, bara                                                  | 0.241         |                |                |                        |            |
| 51 Blowdown in %                                                   | 7.000         |                |                |                        |            |
| 52 Acoustic pressure drop during, bara                             | 0.134         |                |                |                        |            |
| 53 Irreverisble pressure drop during, bara                         | 0.045         |                |                |                        |            |
| 54 Total pressure drop during, bara                                | 0.179         |                |                |                        |            |
| 55 Blowdown required for stable operation in % during              | 5.183         |                |                |                        |            |
| 56 Pressure at PRV inlet during. bara                              | 4.627         |                |                |                        |            |
| 57 Time required for. milliseconds                                 | 27.000        |                |                |                        |            |
| 58 Wave time during. milliseconds                                  | 1516.026      |                |                |                        |            |
| 59 Wave time / time required for                                   | 1.000         |                |                |                        |            |
| 60 Resonance/Harmonics during                                      | Not Likely    | <del>-</del> - |                |                        |            |
| 61 Chatter, flutter, or cycle during                               | Not Likely    | Not Likely     |                |                        |            |
| 62                                                                 |               | ·              |                |                        |            |
| Segment #, Type, Name 63                                           | D/t           | Maximum SPL.   | Limit SPL. dB  | SPL<br>Difference.     | Vibration  |
| UJ                                                                 |               | dB             |                | Difference.            | Risk?      |
| CI 001 Parana Camana A THOM THE PER                                | 16.00         | 05 50          | 199.00         | 01 05                  | WT-4 T 211 |
|                                                                    |               |                |                |                        |            |

Source: SuperChems v7



#### Let's make the valve chatter even when we meet the 3 % rule

- ➤ Inlet line is 5 m long
- Increase inlet line diameter to 5 inches



### All Vapor Solution, L = 5 m, Enlarged Inlet Pipe Diameter to 5 inches

| 33 |                                                                 |                   |               |                |                 |           |
|----|-----------------------------------------------------------------|-------------------|---------------|----------------|-----------------|-----------|
| 34 | Relief device found at segment 2                                | GROLMES-FARRIS-41 | P6: NOT SPECI | FIED. Bellows. | Service= Twoph  | ase       |
| 35 | Last iteration Kb correction                                    | 1.00              |               |                |                 |           |
| 36 | Pressure at device inlet. bara                                  | 4.69              |               |                |                 |           |
| 37 | % inlet pressure drop relative to actual set point              | 3.24              |               |                |                 |           |
| 38 | % irreversible inlet pressure drop relative to actual set point | 3.11              | ** WARNING: I | nlet pressure  | drop exceeds 3. | 0 percent |
| 39 | % back pressure relative to actual set point                    | 6.89              |               |                |                 |           |
| 40 |                                                                 |                   |               |                |                 |           |
|    | Segment #, Type, Name                                           | Start             | End           | Length. in     | Exit            | Exit/Flow |
| 41 |                                                                 | Elevation. in 1   | Elevation. in |                | Diameter. in    | Area. in2 |
| 42 | 001, Piping Segment, 4 INCH INLET                               | 0.0000            | 0.0000        | 196.8504       | 5.0470          | 20.0058   |
|    | 002, Pressure Relief Valve (orifice), GROLMES-FARRIS-4P6        | 0.0000            | 19.8750       | 19.8750        | 2.8570          | 6.4108    |
|    | 003, Piping Segment, 6 INCH OUTLET                              | 19.8750           | 19.8750       | 5.0000         | 6.0650          | 28.8903   |
| 45 |                                                                 |                   |               |                |                 |           |
|    | PRV Inlet Pressure Drop Stability Analysis                      | Opening           | Closing       |                |                 |           |
| 47 | Pressure required for. bara                                     | 4.461             | 4.219         | <del></del>    |                 |           |
| 48 | Blowdown, bara                                                  | 0.241             | 0.241         |                |                 |           |
| 49 | Blowdown in %                                                   | 7.000             | 7.000         |                |                 |           |
| 50 | Acoustic pressure drop during. bara                             | 0.972             | 0.536         |                |                 |           |
| 51 | Irreverisble pressure drop during. bara                         | 0.074             | 0.024         |                |                 |           |
| 52 | Total pressure drop during, bara                                | 1.046             | 0.560         |                |                 |           |
| 53 | Blowdown required for stable operation in % during              | 30.336            | 16.243        |                |                 |           |
| 54 | Pressure at PRV inlet during. bara                              | 3.760             | 4.245         | <del></del>    |                 |           |
| 55 | Time required for. milliseconds                                 | 27.000            | 38.000        |                |                 |           |
|    | Wave time during. milliseconds                                  | 22.456            | 22.456        |                |                 |           |
|    | Wave time / time required for                                   | 0.832             | 0.591         | <del></del>    |                 |           |
|    | Resonance/Harmonics during                                      | Likely            | Not Likely    |                |                 |           |
|    | Chatter, flutter, or cycle during                               | Chatter Likely    | Not Likely    |                |                 |           |
| 60 |                                                                 |                   |               |                |                 |           |
|    | Segment #, Type, Name                                           | D/t               |               | Limit SPL. dB  | SPL             | Vibration |
| 61 |                                                                 |                   | dB            |                | Difference.     | Risk?     |
|    |                                                                 |                   |               |                | Source: Super   | Chems v7  |



### All Vapor Solution, L = 5 m, Enlarged Inlet Pipe Diameter to 6 inches

| 34 Relief device found at segment 2                                | GROLMES-FARRIS-4 | P6: NOT SPECII     | FIED. Bellows. | Service= Twopha          | ase                |
|--------------------------------------------------------------------|------------------|--------------------|----------------|--------------------------|--------------------|
| 35 Last iteration Kb correction                                    | 1.00             |                    |                | -                        |                    |
| 36 Pressure at device inlet. bara                                  | 4.76             |                    |                |                          |                    |
| 37 % inlet pressure drop relative to actual set point              | 1.38             |                    |                |                          |                    |
| 38 % irreversible inlet pressure drop relative to actual set point | 1.36             |                    |                |                          |                    |
| 39 % back pressure relative to actual set point                    | 7.08             |                    |                |                          |                    |
| Segment #, Type, Name                                              | Start            | End                | Length, in     | Exit                     | Exit/Flow          |
| 41                                                                 | Elevation. in    | Elevation. in      | -              | Diameter. in             | Area. in2          |
| 42 001, Piping Segment, 4 INCH INLET                               | 0.0000           | 0.0000             | 196.8504       | 6.0650                   | 28.8903            |
| 43 002, Pressure Relief Valve (orifice), GROLMES-FARRIS-4P6        | 0.0000           | 19.8750            | 19.8750        | 2.8570                   | 6.4108             |
| 44 003, Piping Segment, 6 INCH OUTLET                              | 19.8750          | 19.8750            | 5.0000         | 6.0650                   | 28.8903            |
| 45                                                                 |                  |                    |                |                          |                    |
| 46 PRV Inlet Pressure Drop Stability Analysis                      | Opening          | Closing            |                |                          |                    |
| 47 Pressure required for. bara                                     | 4.461            | 4.219              | <del></del>    |                          |                    |
| 48 Blowdown. bara                                                  | 0.241            | 0.241              |                |                          |                    |
| 49 Blowdown in %                                                   | 7.000            | 7.000              |                |                          |                    |
| 50 Acoustic pressure drop during. bara                             | 0.668            | 0.372              |                |                          |                    |
| 51 Irreverisble pressure drop during, bara                         | 0.032            | 0.010              |                |                          |                    |
| 52 Total pressure drop during. bara                                | 0.700            | 0.382              |                |                          |                    |
| 53 Blowdown required for stable operation in % during              | 20.311           | 11.083             |                |                          |                    |
| 54 Pressure at PRV inlet during. bara                              | 4.105            | 4.423              | <del></del>    |                          |                    |
| 55 Time required for. milliseconds                                 | 27.000           | 38.000             |                |                          |                    |
| 56 Wave time during. milliseconds                                  | 22.455           | 22.455             |                |                          |                    |
| 57 Wave time / time required for                                   | 0.832            | 0.591              | <del></del>    |                          |                    |
| 58 Resonance/Harmonics during                                      | Likely           | Not Likely         |                |                          |                    |
| 59 Chatter, flutter, or cycle during                               | Chatter Likely   | Not Likely         |                |                          |                    |
| 60                                                                 |                  |                    |                |                          |                    |
| Segment #, Type, Name                                              | D/t              | Maximum SPL.<br>dB | Limit SPL. dB  | SPL<br>Difference.<br>dB | Vibration<br>Risk? |
| 67 001 Dining Segment A TMCH TMIRT                                 | 21 66            | 85 40              | 176 34         | -an a4                   | Mot Libels         |
|                                                                    |                  |                    |                | Source: Su               | perChems v7        |



#### The acoustic velocity estimates can be subject to uncertainties

- > This is most significant for liquids
- Pipe flexibility can lower the value of the acoustic velocity
- The presence of minute amounts of entrained gas in liquids can reduce the acoustic velocity
- Adding a small amount of air, say 0.1 % by volume can reduce the value of the acoustic velocity for a liquid-air system by a factor of 1/2



The acoustic velocity of a traveling wave can be calculated based on the fluid properties and the flexibility of the piping supports

$$u_{ac} = \eta u_{sonic} = \frac{1}{\sqrt{1 + \frac{K}{E}\psi}} u_{sonic}$$

$$u_{sonic} = \sqrt{\frac{C_p}{C_v}} \frac{1}{\kappa \rho} = \sqrt{\left[\frac{\partial P}{\partial \rho}\right]_S} = \sqrt{\frac{1}{\kappa_S \rho}}$$

| Pipe condition                                            | $\psi$                       |
|-----------------------------------------------------------|------------------------------|
| Rigid                                                     | 0                            |
| Anchored against longitudinal movement through its length | $\frac{d}{\delta}(1-\nu^2)$  |
| Anchored against longitudinal movement at the upper end   | $\frac{d}{\delta}(1.25-\nu)$ |
| Frequent expansion joints present                         | $\frac{d}{\delta}$           |





#### Let's consider the impact of piping flexibility on acoustic velocity reduction

| Material       | Piping Schedule | K = 1/κ  | d/δ  | η     |
|----------------|-----------------|----------|------|-------|
|                | US              | GPa      |      |       |
| Liquid Water   | 5               | 2.19     | 52.2 | 0.799 |
| Liquid Water   | 10              | 2.19     | 35.5 | 0.850 |
| Liquid Water   | 40              | 2.19     | 13.4 | 0.934 |
| Liquid Water   | 80              | 2.19     | 11.3 | 0.944 |
| Liquid Water   | 160             | 2.19     | 6.47 | 0.967 |
|                |                 |          |      |       |
| Liquid Propane | 5               | 0.11     | 52.2 | 0.986 |
| Liquid Propane | 10              | 0.11     | 35.5 | 0.991 |
| Liquid Propane | 40              | 0.11     | 13.4 | 0.996 |
| Liquid Propane | 80              | 0.11     | 11.3 | 0.997 |
| Liquid Propane | 160             | 0.11     | 6.47 | 0.998 |
|                |                 |          |      |       |
| Vapor Propane  | 5               | 6.80E-04 | 52.2 | 1.000 |
| Vapor Propane  | 10              | 6.80E-04 | 35.5 | 1.000 |
| Vapor Propane  | 40              | 6.80E-04 | 13.4 | 1.000 |
| Vapor Propane  | 80              | 6.80E-04 | 11.3 | 1.000 |
| Vapor Propane  | 160             | 6.80E-04 | 6.47 | 1.000 |

Propane data at 293 K and 8.35 bara

Piping flexibility is most important for liquids that are highly incompressible where thin wall piping is used



# It is well established that small amounts of vapor can reduce the two-phase mixture speed of sound

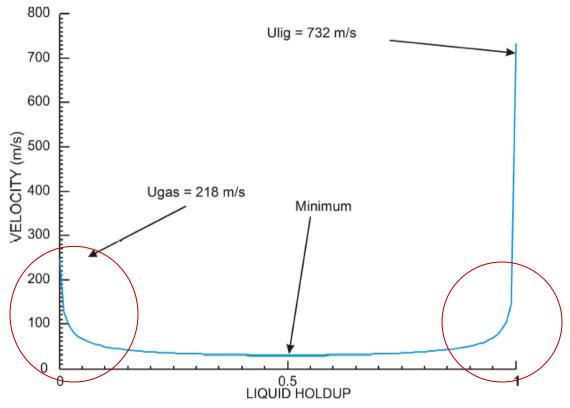



Table 2.1: Propane properties at 293 K and  $8.35 \times 10^5$  Pa.

| Property                                                                                                  | Liquid                                          | Vapor                                                                                              |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Density, kg/m <sup>3</sup><br>$\kappa$ , Pa <sup>-1</sup><br>$\beta$ , K <sup>-1</sup><br>$u_{max}$ , m/s | 523<br>9.18 ×10 <sup>-9</sup><br>0.00408<br>733 | $   \begin{array}{r}     18.1 \\     1.47 \times 10^{-6} \\     0.00558 \\     218   \end{array} $ |
| ·                                                                                                         |                                                 |                                                                                                    |

Table 2.2: Calculated propane mixture maximum velocities

| የ $\epsilon_l$ | $u_{m,max}$ in (m/s) | $\epsilon_l$ | $u_{m,max}$ in (m/s) |
|----------------|----------------------|--------------|----------------------|
|                |                      |              |                      |
| 0.00           | 218                  | 0.60         | 81.7                 |
| 0.05           | 145                  | 0.70         | 87.6                 |
| 0.10           | 118                  | 0.80         | 100                  |
| 0.20           | 95                   | 0.90         | 133                  |
| 0.30           | 85.1                 | 0.95         | 181                  |
| 0.40           | 80.7                 | 0.99         | 357                  |
| 0.50           | 79.7                 | 1.00         | 732                  |
|                |                      |              |                      |

$$u_m^2 = \frac{1}{\frac{\alpha}{u_{g,max}^2 + \frac{1-\alpha}{u_{l,max}^2} + (\rho_g - \rho_l) \left[\frac{\partial \alpha}{\partial P}\right]_s}}$$



#### We can conclude the following based on the reasoning presented in this paper

- ➤ Chatter is most likely in vapor service Damage will most likely be due to large mechanical forces caused by the rapid valve closure and/or by PRV reduced flow capacity due to PRV damage. This is especially true for large valves and/or for valves in high pressure service
- > Chatter is least likely in flashing two-phase\* flow service and/or in liquid service
- Flutter will almost always occur in liquid service with fast opening or pop action valves
- > Cycling is most likely to occur in flashing two-phase flow service
- ➤ Piping damage is most likely in liquid service due to the large magnitude of the water hammer pressure waves propagated upstream during rapid valve closure (full or partial), i.e. during chatter or during flutter
- ➤ The 3 % inlet pressure is not sufficient to guarantee PRV stability. Stability may need to be assessed and confirmed for all credible scenarios and not necessarily just the one with the highest required flow rate



#### References

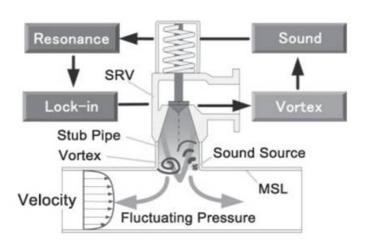
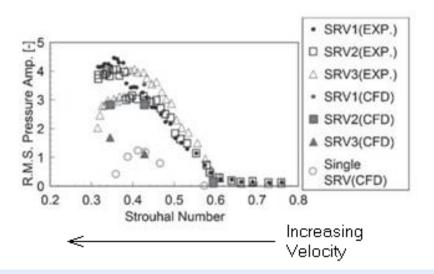
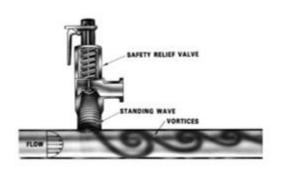
- ➤ [1] G. A. Melhem, "PRV Stability Requirements", Fall DIERS Users Group Meeting, Boston, October 2012
- ▶ [2] M. Grolmes, "DIERS Odds and Ends PRV Stability", Parts 1 through 5, Multiple DIERS Users Group Meetings
- ➤ [3] W. W. Powell, "A Study of Resonant Phenomena in Pilot Operated Safety Relief Valves", Anderson Greenwood Report Number 2-0175-51, 1971
- ➤ [4] "Pressure Drop Considerations on Pressure Relief Valve Inlets", Consolidated Safety Valves Report Number CON/PI-10, March 1988
- ➤ [5] "Interim Research Report on Safety Relief Valve Stability and Piping Vibration Risk", 2003-2012, DIERS Users Group Report

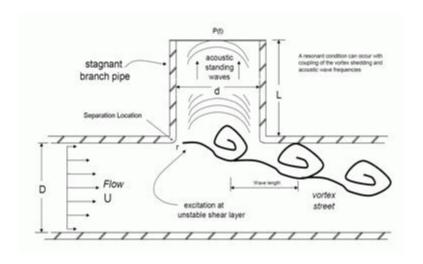
<sup>\*:</sup> Note that condensation shocks are possible for two-phase flashing flows





#### It is common to install relief devices on column overhead and process lines



Fig. 4 Flow-induced acoustic resonance of SRVs in MSL

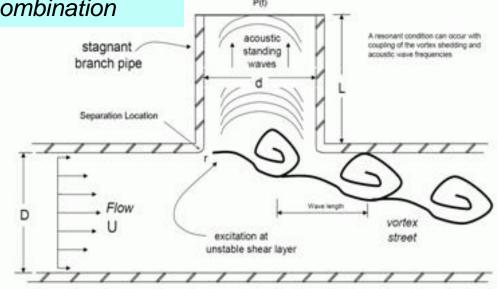


#### "Singing" Safety Relief Valve



Reference: Hambris, S.A., Mulcahy, T.M., Shah, V.N., et. al., "Flow-Induced Vibration Effects on Nuclear Power Plant Components Due to Main Steam Line Valve Singing," Proceedings of the Naith NRCASME Symposium on Valves, Pumps, and Inservice Testing, NREG-CP-0152, Vol. 6, pp. 38 4-93.






Resonance occurs when the vortex shedding frequency coincides with the acoustic frequency of the standpipe

### Natural frequency of standpipe / valve combination

$$f_a = \left(\frac{2n-1}{4}\right) \frac{c_0}{L + L_e}$$

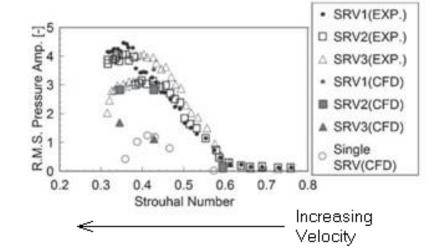
n = 1 for 1<sup>st</sup> mode, 2 for 3<sup>rd</sup> mode, etc.,  $c_0 =$  fluid speed of sound, and r = radius of inlet chamfer  $L_e =$  End correction corresponding to Rayleigh's upper limit = 0.425 d



#### Frequency of pressure oscillations (sound) created by vortex shedding

Vortex shedding creates pressure oscillations – the energy source for standing waves

$$N_{St} = \frac{f_s}{U}(d+r)$$
  $N_{St} = Strouhal Number where 0.63 >=  $N_{St} >= 0.3$$ 




Resonance can cause fatigue failure from cyclic loads and can cause leaking and chatter of the valve

$$f_s = N_{St} (U/D) \approx 0.33 (n-0.25) (U/D)$$

For 
$$n = 1$$

$$U = \frac{f_s}{N_{St}} (d+r) = \frac{1}{4} \left( \frac{c_0}{L+L_e} \right) \left( \frac{d+r}{N_{St}} \right)$$



 $N_{St} = Strouhal Number where 0.63 \ge N_{St} \ge 0.3$ 

Peak oscillations occur around  $N_{St} = 0.4$ 

RMS is the ratio of pressure oscillations divided by dynamic pressure =  $\frac{1}{2} \rho u^2$  RMS begins increasing at a specific onset Strouhal Number and flow velocity depending on acoustic speed, pipe diameter, and pipe length, reaches a peak value and then decreases





#### About ioMosaic Corporation

ioMosaic Corporation is the leading provider of safety and risk management consulting services, training, and software solutions. Whether you need pressure relief system design services, quantitative risk assessments, onsite training, or the latest in software technology, ioMosaic has the knowledge, experience, and resources to address your unique needs. At ioMosaic, we are delivering practical solutions for safety, risk, and business challenges facing our clients.

For more information regarding ioMosaic and our services, please visit <u>www.iomosaic.com</u>.



#### SALEM OFFICE

93 Stiles Road Salem, New Hampshire 03079 Tel: 603-893-7009

#### HOUSTON OFFICE

2401 Fountain View, Suite 850 Houston, Texas 77057 Tel: 713-490-5220

#### MINNEAPOLIS OFFICE

401 North 3<sup>rd</sup> Street, Suite 410 Minneapolis, Minnesota 55401 Tel: 612-338-1669