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1 INTRODUCTION 5

1 Introduction

D ynamic and static methods were previously developed for the modeling of spring loaded pres-
sure relief valve stability in Parts 1 through 7 of this white paper series [2, 3, 4, 5, 6, 7, 8]. We

extend those methods to pilot operated pressure relief valves in this 8th installment. Pilot operated
pressure relief valves can be modeled dynamically using either a dual degree of freedom (DDOF)
model or a lumped single degree of freedom (SDOF) model.

This paper provides guidance on how to select parameters for both DDOF and SDOF models for
use with Process Safety Office R© SuperChems Expert .

2 Pilot Operated Pressure Relief Valves

Figure 1: A typical pilot operated pres-
sure relief valve

https://www.leser.com/en/products/pilot-operated-
safety-valves/

Pilot operated pressure relief valves (POPRV) consist of
two major components, (a) the “pilot” valve, and (b) the
“main” valve. This is shown in Figure 1.

Both the pilot valve and the main valve are spring loaded.
The pilot valve, also called the “pilot”, is the control unit
of the POPRV. It controls the function and behavior of
the main valve.

The pilot valve directs the main valve to open or close by
allowing fluid to enter or exit the dome of the main valve.
The main valve action follows the pilot valve action but
can lag the pilot valve action by several milliseconds.

3 How Pilot Operated Pressure Re-
lief Valves Work

Figure 2: Typical POPRV
modulating behaviorPOPRVs work somewhat similarly to spring operated pressure relief

valves but they rely on the system pressure to open and close the
main valve.

During normal operation, the system fluid and pressure are routed
to the main valve inlet and the main valve dome as illustrated in
Figure 3(a). Since the main valve dome area, Apiston or A2, is larger
than the area of the main valve seat, Aseat or A0, the closing force
is greater than the opening force. This keeps the main valve tightly
closed. The use of a piston makes the POPRV inherently balanced
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4 FLUID STIFFNESS 6

Figure 3: How pilot operated pressure relief valves work

https://www.leser.com/en/products/pilot-operated-safety-valves/

against backpressure.

When the system pressure reaches the set pressure, the pilot valve actuates. The fluid is no longer
routed to the dome as illustrated in Figure 3(b). This prevents any further increase in dome pres-
sure. Because the dome is vented, the main valve closing force becomes less than the opening
force causing the main valve to open. Note that pilots can also be non-flowing and do not flow
while the main valve is opened and flowing. Non-flowing pilots will just flow the dome volume at
each open-close cycle. This can be useful in cryogenic applications such as LNG.

Figure 4: Typical POPRV pop
action behavior

As the main valve opens and depending on the pilot valve type, the
opening can either be quick and complete (pop or snap action), or
gradual and partial following system pressure (modulating action).
Modulating POPRVs will flow the required system flow rate to keep
the system pressure below a certain limit as shown in Figure 3(c).
Because of their design, modulating POPRVs are less susceptible to
chatter than spring loaded pressure relief valves.

If the system pressure drops to the closing pressure, the pilot valve actuates and again routes the
fluid and fluid pressure to the dome. This is illustrated in Figure 3(d). The pressure in the dome
builds up and the main valve recloses either rapidly and completely (pop action) or gradually and
partially following the system pressure (modulating action).

4 Fluid Stiffness

Because all fluids are compressible (including liquids), they can be treated as springs. The stiffness
of a fluid is proportional to its change in volume due to a change in system pressure. A spring can
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5 MODELING PILOT PRESSURE RELIEF VALVE DYNAMICS 7

store and deliver power similar to a capacitor in an electrical system. The stiffness of a spring is
determined by its spring constant, Ksf . The larger the constant, the stiffer the spring. The fluid or
hydraulic stiffness is related to its modulus of elasticity, E, or isothermal/adiabatic compressibility,
κ.

A linear actuator containing a compressible fluid is shown in Figure 5. The actuator behaves like a
spring because of the capacitance of the fluid. The stiffness of the actuator is given by:

Ksx =
A2E

V
where E =

1

κ
(1)

where A is the piston area, and V is the volume of the fluid.

Figure 5: Linear actuator con-
taining a compressible fluidThe geometry of the cylinder in Figure 5 will determine the stiffness

of the component. The stiffness will change as the cylinder expands
and retracts.

Note that increasing the piston area will increase the stiffness of the
system while increasing the fluid volume will decrease the stiffness
of the system. Equation 1 shows that the stiffness increase is propor-
tional to A2. Increasing the area has a greater effect in increasing the
responsiveness of the system than decreasing the volume or length.

A piston - volume (dome) system can be assumed to be a linear
mass-spring system. This is a reasonable assumption even though
the dome pressure will very during the piston stroke due to fluid compressibility:

Fx = Ksxx = PA or Ksx =
PA

x
(2)

where Fx is the fluid or hydraulic force. The frequency of the piston movement can be expressed
as a function of the fluid spring constant and the mass of the piston:

fp =
1

2π

√
Ksx

m
=

1

2π

√
PA

xm
(3)

where m is the mass of the piston and fp is the frequency in Hz. fp increases as x decreases (or a
PORV main valve opens as pressure increases and its remaining lift decreases).

5 Modeling Pilot Pressure Relief Valve Dynamics

A typical two (double) degree of freedom system is illustrated in Figure 6. Two dynamic force
balance equations are written, one for the pilot spring-mass system, and one for the main valve
spring-fluid-mass system [1, 9, 10, 11, 12].
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5 MODELING PILOT PRESSURE RELIEF VALVE DYNAMICS 8

Figure 6: DDOF representation of a
pilot operated pressure relief valve[1]Pilot valve:

The force balance for the pilot spool can be written as fol-
lows:

P1A3 = m1
d2y

dt2
+ C1

dy

dt
+ Ky (y0 + y) + Ksyy + m1g (4)

A3 =
πd2

3

4
(5)

where P1 is the pressure at the pilot valve inlet, d3 is the ori-
fice diameter in pilot valve seat, A3 is the flow area of d3,
m1 is the mass of the pilot spool, y is the displacement of pi-
lot spool, y0 is the pre-compression displacement of the pilot
spring,Ky is the pilot spring stiffness or spring constant,Ksy

is the hydrodynamic force stiffness of the pilot valve port, g is the gravitational constant, and C1 is
the viscous damping coefficient of the pilot spool.

Main valve:

The force balance for the main valve can be written as follows:

P0A0 − P2A2 = m0
d2x

dt2
+ C0

dx

dt
+Kx (x0 + x) +Ksxx+m0g + Ff (6)

where P0 is the pressure at the main valve inlet, P2 is the pressure in the main valve spring chamber,
A0 is the effective area of the lower-end of the main spool, A2 is the effective area of the upper-
end of the main spool, m0 is the mass of the main valve spool and is typically negligible, x is
the displacement of main spool, x0 is the pre-compression displacement of the main valve spring,
Kx is the main valve spring stiffness or spring constant (typically a light or soft spring), Ksx is
the hydrodynamic force stiffness of the main valve port, Ff is the static friction between the main
spool and the seat which is typically negligible, and C0 is the viscous damping coefficient of the
main spool.

If P0 increases just enough to open the main valve (x ' 0) and holds at that value, then:

P0A0 > P2A2 +Kxx0 +m0g (7)

P0 > P2
A2

A0

+
Kxx0 +m0g

A0

(8)

A volume balance is written for the main valve inlet volume where the volumetric flow rates in and
out of the main valve inlet volume must balance:

V0

E

dP0

dt
= q0 − qm − q1 − A0

dx

dt
(9)
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5 MODELING PILOT PRESSURE RELIEF VALVE DYNAMICS 9

where V0 is the volume of the main valve inlet, q0 is the volumetric flow rate through the main
valve, q1 is the volumetric flow rate through orifice 1 which is positive if P0 ≥ P1 and negative
if P0 < P1, qm is the volumetric flow rate through the main valve outlet, and E is the fluid bulk
modulus of elasticity 1. For liquid flow through the main valve, qm and q1 are given by:

q0 = Cd,0A0

√
2

ρ
(Psrc − P0) (10)

qm = Cd,mAx

√
2

ρ
(P0 − Pb) (11)

Ax = n

[
d2

0

4
cos−1

(
1− 2x

d0

)
−

(
d0

2
− x

) √
x (d0 − x)

]
(12)

q1 = Cd,1
πd2

1

4

√
2

ρ
(P0 − P1) (13)

where Psrc is the vessel or protected equipment source pressure which can be time dependent, Pb

is the backpressure at the main valve outlet, Ax is the curtain flow area of the main valve outlet
which depends on main valve spring lift x, Cd,m is the discharge coefficient of the main valve flow
outlet, Cd,1 is the discharge coefficient of orifice 1, n is the number of drain holes on the main
valve sleeve, d0 is the diameter of drain hole on the main valve sleeve, d1 is the diameter of orifice
1.

Additional volume balances are written for the main valve spring chamber and for the pilot valve
inlet:

V2

E

dP2

dt
− A2

dx

dt
= q2 (14)

V1

E

dP1

dt
= q1 − qP − q2 (15)

q2 = Cd,2
πd2

2

4

√
2

ρ
(P1 − P2) (16)

qp = Cd,pπd3y sinα

√
2

ρ
(P1 − Pb) (17)

where V1 is the volume of the pilot inlet, V2 is the volume of the main valve spring chamber and q2
is the volumetric flow rate through orifice 2, positive if P1 ≥ P2 and negative if P1 < P2, qp is the
volumetric flow rate through the pilot valve outlet, d2 is the diameter of orifice 2, and Cd,2 is the
discharge coefficient of orifice 2, Cd,p is the discharge coefficient of the pilot valve port, and α is
the half cone angle of the pilot spool.

The equations described above for the pilot valve and main valve can be solved simultaneously to

1The isothermal value of ET is equal to the inverse of the fluid isothermal compressibility κT , E = 1/κT
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6 MODELING POPRV DYNAMICS USING A LUMPED SDOF MODEL 10

calculate x, y, uy, ux, P0, P1, and P2:

dy

dt
= uy (18)

dx

dt
= ux (19)

m1
duy

dt
+ C1uy = P1A3 −Ky (y0 + y)−Ksyy −m1g (20)

m0
dux

dt
+ C0ux = P0A0 − P2A2 −Kx (x0 + x)−Ksxx−m0g − Ff (21)

V0

E

dP0

dt
= q0 − qm − q1 − A0

dx

dt
(22)

V2

E

dP2

dt
= q2 + A2

dx

dt
(23)

V1

E

dP1

dt
= q1 − qP − q2 (24)

(25)

The use of a pilot DDOF model requires detailed information about the pilot valve internals.

6 Modeling POPRV Dynamics Using a Lumped SDOF Model

DDOF model parameters are usually not immediately available and have to be obtained from the
relief device manufacturer. Recent detailed dynamic studies using DDOF models demonstrate
that the main valve action closely follows the pilot valve action (see Figure 7). If we assume
dy
dt

= dx
dt

= uy = ux, Ksx = Ksy = 0, P1 ' P0, and Ff = 0, we can reduce the DDOF model to a
lumped SDOF model:

(m0 +m1)︸ ︷︷ ︸
mD

dux

dt
+ (C1 + C0)ux = P0A0 + P0A3︸ ︷︷ ︸

FUp

−P2A2 − (Kx +Ky)x−Kxx0 −Kyy0 −mDg︸ ︷︷ ︸
FDn

= FNET (26)

Information about main valve lift as a function of overpressure and the opening time of the POPRV
can be obtained from the relief device manufacturer. A lumped POPRV single degree of freedom
model (see Figure 8) can be used based on the equations developed by Melhem [2, 3] for a spring
loaded pressure relief valve.

Kxx0 and Kyy0 can be related to fluid force:

Kxx0 +m0g = PsetA0 − P2A2

Kyy0 +m1g = (Pset − Patm)A3

c©ioMosaic Corporation ⇑ ⇓ Revision 1 Printed October 18, 2024
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6 MODELING POPRV DYNAMICS USING A LUMPED SDOF MODEL 11

Pset is the absolute set pressure of the POPRV and Patm is the absolute ambient pressure. The
lumped SDOF model can be further reduced to a form that is more equivalent to a spring loaded
pressure relief device SDOF model:

mD
dux

dt
+ Cux = (P0 − Pset)A0

+ (P0 − Pset + Patm)A3

−K̃xx

= FNET (27)

Figure 7: DDOF solution for main valve and pilot
valve pressureswhere K̃x = Kx + Ky, and C = C0 + C1.

Using a single degree of freedom analysis to
describe the motion of a spring loaded valve
disc, we can write the following equations
(see Melhem [2, 3]):

dx

dt
= ux (28)

mD
dux

dt
+ Cux = FNET (29)

where C is the coefficient of viscous damping
in Ns/m, mD is the spring-disk system mass
in motion in kg, FNET is the net force acting
on the disk in N, and ux is the speed of valve stem movement in m/s.

The general form of FNET for a pilot or spring loaded pressure relief valve is reproduced from
Melhem [2]:

FNET = FUp − FDn

= (P0 − Pset)A0 + ηP∗ (A2 − A0)︸ ︷︷ ︸
or η(P0−Pset+Patm)

+ṁ ue cos θ +
ṁ2

ρ0A0

− 1

ψ2

Ksx− PatmA0 (β − 1)− Pb (A2 − βA0)

1 ≤ β ≤ A2

A0

Ks =

(
PFull Flow

Pset

) (
A2

A0

) (
PsetA0

xmax

)

where βA0 represents the disk area protected from backpressure 2, ṁ is the mass flow rate in kg/s,

2Typically this is the area occupied by bellows in a spring loaded bellows PRV, Abel = βA0.
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6 MODELING POPRV DYNAMICS USING A LUMPED SDOF MODEL 12

xmax is the maximum disk lift 3 in m, ue is fluid exit velocity (typically sonic for gas flow) in m/s,
θ is the fluid exit discharge angle with respect to the vertical in degrees, P∗ is the pressure on the
upstream side of the disk in Pa and η is a conversion efficiency factor used to calibrate the model.
The value of P∗ will depend on whether the flow is choked or not.

Figure 8: Forces acting on the valve disc and con-
trol volume

The value of βA0 is used to isolate the disk area
from backpressure. The value of β is selected such
that the lumped SDOF model reproduces the spec-
ified blowdown pressure of the POPRV. The val-
ues of Ks and mD are selected such that specified
set pressure and opening time of the POPRV are
matched. If β = 1, the valve disk is exposed to
a backpressure force of Pb (A2 − A0). If β = A2

A0
,

the valve disk is exposed to a backpressure force of
Patm (A2 − A0).

Finally, the values of η and θ are regressed based
on the known performance of the POPRV, i.e. frac-
tional lift vs. overpressure which can be obtained
from the manufacturer. Typical values for η and θ
for a pilot operated pressure relief valve should be
close to 0 and 90 degrees.

Using a lumped SDOF model for a pilot pressure relief device in SuperChems, the user can only
specify the value of A0. As a result, SuperChems allows the user to define a ψ2 factor to derate the
contribution K̃xx such that:

1

ψ2

Ks = K̃xx (30)

The value of ψ2 will often be close to 1 but is larger than 1.

It is typical to relate the coefficient of viscous damping to the critical damping coefficient for a
spring-mass system:

C = ζCcr (31)

Ccr = 2mDωn =
2Ks

ωn

= 2
√
KsmD (32)

ωn =

√
Ks

mD

(33)

where ζ is the viscous damping coefficient, dimensionless, typically set at 0.2, and ωn is the un-
damped circular natural frequency in radians/s. Other variables used in the context of single

3Maximum disk lift xmax is greater than disk critical lift, xc. Critical lift occurs when the curtain flow area equals
the nozzle or seat flow area, 2πrxc = A0, where A0 = πr2.
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7 USE OF PILOT OPERATED PRESSURE RELIEF VALVES 13

degree of freedom analysis include:

τn =
2π

ωn

= 2π

√
mD

Ks

(34)

fn =
1

τn
=
ωn

2π
=

1

2π

√
Ks

mD

(35)

where τn is the undamped natural period in s, and fn is the undamped natural frequency in Hz
where one Hz equals 1 cycle/second.

Using the above equations, we can now write an overall description of how the valve disc will
move:

dx

dt
= ud (36)

dud

dt
=

1

mD

[FNET − ζCcrud] (37)

When the valve disk is on the seat or at the upper stop, a coefficient of restitution is used to reverse
the spindle direction [13]:

dx
′

dt
= −βdx

dt
(38)

where β is the coefficient of restitution (typically set at 0.01) and x′ represents x after contact with
the valve seat or upper stops.

7 Use of Pilot Operated Pressure Relief Valves

Pilot operated pressure relief valves are used in clean service (particle sizes of solids and sus-
pensions less than 100 microns). Modulating pilot operated relief valves can provide a practical
solution where conventional and bellows spring loaded devices are likely to chatter due to exces-
sive inlet pressure loss and/or backpressure. They are also used in cryogenic service or in cold
weather climates because of potential freezing of atmospheric moisture inside the bonnets of bel-
lows spring loaded pressure relief valves. In addition, applications requiring set pressure indepen-
dence of backpressure and applications with increased tightness requirements are good candidates
for the use of pilot operated pressure relief valves.

8 Specifying a POPRV SDOF Model using SuperChems

SuperChems Enterprise provides the ability to regress SDOF model parameters for conventional,
bellows, and pilot operated pressure relief valves. Tools are also provided to test the goodness of
fit and the performance of the developed models prior to use by the 1D fluid dynamics models. A
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8 SPECIFYING A POPRV SDOF MODEL USING SUPERCHEMS 14

numerical test bench tool is provided to quickly test the implied blowdown of an SDOF model as
well as the relief device opening and closing times.

For example, a lumped SDOF model for a modulating 8T10 POPRV with a set pressure of 400 psig
is developed using SuperChems Enterprise. The data provided by the manufacturer included an
opening time of approximately 80 ms, an expected blowdown between 0 and 4 %, and the fraction
open at three different levels of overpressure. The piston area protected from overpressure is set
equal to the seat area (flow area), β = 1, and the piston area A2 is set at 1.2 times the seat area,
A2 = 1.2A0.

Figure 9 illustrates an excellent fit for a lumped SDOF model. Figure 10 illustrates the performance
of the model yielding a blowdown of approximately 3 % and an opening time of approximately 80
ms.

Figure 9: SDOF best fit of model parameters for an 8T10 modulating POPRV set at 400 psig
(Source: SuperChems Enterprise v11.92)

Lumped SDOF models are used to model the flow dynamics of systems where a single POPRV is
installed as well as systems where multiple relief devices are installed. Information pertaining to
the dynamic loading of reaction forces on system piping, potential unstable interactions of multiple
device installations, optimal separation distances between relief devices, and the adequacy of set
points staggering and sequencing can be evaluated for risk reduction.
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9 CONCLUSIONS 15

Figure 10: SDOF best fit model performance testing for an 8T10 modulating POPRV set at 400
psig (Source: SuperChems Enterprise v11.92)

9 Conclusions

We have demonstrated that modeling the DDOF dynamics of pilot operated pressure relief valves
can be achieved with a lumped SDOF mass-spring system.

A lumped SDOF model can be just as effective and often more practical to develop based on
the limited availability of relief device data. The existing 1D Dynamics models in SuperChems
Enterprise can be easily used to fit the required lumped SDOF model parameters and to model the
dynamics of pilot operated pressure relief valves single device and multiple device installations.
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