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1 INTRODUCTION 2

1 Introduction

Direct minimization of the Gibbs free energy can be used to calculate phase equilibria, chemical

equilibria, and/or simultaneous physical and chemical equilibria. This method may be preferred

for systems where multiple liquid phases can coexist and/or where retrograde phase behavior is

possible during depressuring or pressure relief.

Some of the advantages of direct minimization of the Gibbs free energy include:

1. The atom matrix can be constrained to ensure that inert liquids and/or inert gases are only

present in their respective phases. For example, this can be useful for systems containing

hydrogen and heavy polymers.

2. The atom matrix can be constrained to ensure partial or user defined conversion of one or

more chemical species.

3. Multiple liquid, vapor, and solid phases can be handled simultaneously with simplicity.

4. Phase splitting can be determined a priori.

Some of the disadvantages include:

1. The Gibbs free energy minimum can be very flat and requires high precision estimates.

2. The Formation energies of all chemical species have to be thermodynamically consistent and

calculated at the system temperature using reference elements.

3. Reasonable initial guesses for phase splitting are required. Normally, the most non-ideal

liquid component in the mixture will likely form the dominant component in one liquid phase

while the second most non-ideal liquid component will likely form the dominant component

is the second liquid phase.

2 Historical Perspective

Brinkley [1, 2] laid the foundations to a general-purpose algorithm for the computation of chemical

equilibria in 1947. His algorithm addressed simple ideal systems and was intended for use with

hand calculators, although the algorithm did lend itself to implementation on computers.

In 1958, White et al. [3] and G. B. Dantzig [4], working at the Rand Corporation, developed an

algorithm that solved the chemical equilibrium problem by the direct minimization of the Gibbs

free energy. They were probably the first to use the concept of nonlinear optimization to solve

the problem. They used Newton’s method to minimize the Gibbs free energy of an ideal system.

Boyton [5] and Oliver et al. [6] extended the Rand algorithm to handle pure solid species, and

Dluzniewski and Adler [7] extended it to handle mixed phases.
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3 MINIMIZATION ALGORITHM 3

Gordon and McBride [8] working at the NASA Lewis Research Center, developed an algorithm

that was similar to the Rand algorithm. This algorithm also addressed simple ideal systems, as this

was justified by the high temperature systems encountered in rocket technology.

Probably, the first to implement nonideal models for the solution of complex equilibria were

George et al. [9]. They used Powell’s method to minimize the Gibbs free energy. In order to

avoid singularities they had to transform the variables and eliminate the constraints by introducing

allocation functions.

Gautam and Seider [10], working for the U.S. Department of Energy (the ASPEN Project), used

the quadratic programming method of Wolfe to extend the Rand algorithm. Their algorithm han-

dled nonideal systems, pure solid species and electrolytic solutions. They also developed a new

phase splitting algorithm to determine the number of phases and their associated composition at

equilibrium. Their algorithm is perhaps the most widely accepted algorithm and was implemented

in the early versions of the ASPEN process simulator.

3 Minimization Algorithm

The computation of the equilibrium state of a system is one of constrained optimization. The

minimization of the Gibbs free energy is subject to mass, element balance constraints, and where

applicable, user defined constraints. Recent advances in the field of nonlinear optimization have

greatly simplified the solution of this problem. Process Safety Office R© SuperChems ExpertTM

component uses the Wilson-Han-Powell successive quadratic programming (SQP) algorithm to

directly minimize the Gibbs free energy for nonideal multiphase systems. Advantages of this algo-

rithm include its low number of function and gradient evaluations and its ability to handle simple

bounds on variables, such as non-negativity constraints which eliminates the need to transform

variables in order to avoid singularities.

Cubic equations of state are an attractive choice for representing nonideal systems. They can

be solved analytically without iterative procedures. The Melhem [11, 12] modification of the

Peng-Robinson equation of state (MMPR) provides several advantages when used in the direct

minimization of the Gibbs free energy for nonideal multiphase system including a better tempera-

ture dependency form, a composition dependent mixing rule, analytic derivatives, and the apriori

calculation of thermodynamic phase stability.

4 Simultaneous Chemical and Physical Equilibrium

Mathematically, the equilibrium problem is to minimize the total Gibbs free energy

Gt =
S

∑

i=1

ni

Go
i

RT
+

N−S
∑

i=1

π
∑

p=1

nip

[

Go
i

RT
+ ln

(

Pφip

nip

nTp

)]

(1)
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5 PHYSICAL EQUILIBRIUM 4

subject to the equality constraints,

S
∑

i=1

akini +
N−S
∑

i=1

π
∑

p=1

akinip = bk k = 1, . . . , R ≡ C1 (2)

and the inequality constraints,

ni ≥ 0 i = 1, . . . , S, . . . , Nπ ≡ C2 (3)

where N the number of chemical species, π is the number of phases, S is the number of condensed

solid species, nip is the equilibrium number of moles of the ith species in phase p, nTp is the total

number of moles in phase p, Go
i is the standard Gibbs free energy of the i species evaluated at the

system temperature T , P is the system pressure, aki is the number of atoms of element k in species

i, bk is the number of gram-atoms of element k, and R is the rank of the atom matrix (usually equal

to the number of elements). The element abundance vector b is calculated as the product of the

atom matrix A and the initial number of moles n
o

An
o = b (4)

The number of variables NVAR is equal to ((N − S)× π + S), the number of equality constraints

NMEQ is equal to the rank of the atom matrix R and the total number constraints NCON is equal

to (NVAR + NMEQ).

5 Physical Equilibrium

For the case without chemical reactions, an atom balance is not required and the function mini-

mized becomes:

∆Gt =
Gt −

∑N
i=1 no

i G
o
i

RT
=

N
∑

i=1

π
∑

p=1

nip

[

ln

(

Pφip

nip

nTp

)]

(5)

subject to the equality constraints

no
i −

π
∑

p=1

nip = 0 ≡ C1 i = 1, . . . , N (6)

and the inequality constraints

no
i ≥ nip ≥ 0 ≡ C2 (7)

where no
i is the initial number of moles of the ith species.

The number of variables NVAR is equal to (N × π), the number of equality constraints NMEQ

is equal to the number of species N and the total number constraints NCON is equal to (NVAR +

NMEQ).

c©ioMosaic Corporation All Rights Reserved March 17, 2021



6 ATOM MATRIX RANK CALCULATION 5

6 Atom Matrix Rank Calculation

Singular value decomposition (SVD) is the preferred method [13] to calculate the rank, R, of

the atom matrix. Several unique characteristics of the singular value decomposition are worth

mentioning. Singular value decomposition is often used to solve the linear system AX = B. A is

an [m, n] matrix where m is usually greater or equal to n. X is the solution vector of size [n, 1]. B
is the right hand side vector of size [m, 1].

A = UWV
T and A

T = VWU
T (8)

The two matrices U and V are each orthogonal, or in other words, their columns are orthonormal.

U is of size [m, n] and V is of size [n, n]. W is a diagonal matrix of size [n, n] and is usually stored

as a vector of size [n]. W always contains positive or zero (singular) values. We note that:

U
T
U = V

T
V = I and (9)

X = V × (1/W) ×U
T × B (10)

For a square A matrix:

A
−1 = V × (1/W) × U

T (11)

When A is a square singular matrix, W will contain zero elements. If A is ill-conditioned or near

singular, W will contain very small numbers or numbers close to the machine precision. For a

singular A matrix and where the right hand vector B is zero, SVD yields multiple solutions. Any

V column whose corresponding Wj (element j) is zero yields a solution. When B is not zero, one

might want to select the X solution vector that has the smallest length |X|2. In this case, replace

the value of 1/Wj where Wj = 0 by 0.

For cases where m is less than n, a unique solution is not expected. The SVD has to yield at

least n − m zeros or very small Wj values. Depending on the number of atoms and the number

of components, additional zeros in W are possible. The columns of V corresponding to the zero

elements of W are the basis vectors whose linear combinations with a particular solution, span

the solution space. Each one of those columns represents the stoichiometry of an independent

chemical reaction.

When the number of equations is more than the number of unknowns (m > n), SVD can directly

yield the least-squares solution. The least squares solution vector is given by Equation 10. In

general, where m is larger than n, W will not be singular.

In cases where most of the elements of W are either zeros or close to the machine precision, A can

be approximated by a few terms in the sum below:

Aij =
n

∑

k=1

WkUikVjk (12)

As a result, only the columns of U and V that correspond to non-zero values of W elements need

to be stored in order to recover or approximate the A matrix.
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7 STANDARD GIBBS FREE ENERGY DATA 6

For direct minimization of the Gibbs free energy, the atom matrix is first decomposed into the three

matrices, U , V , and W :

A = UWV
T (13)

If the rank of the matrix is less than the number of elements, the dependent rows corresponding

to the zero elements of the diagonal vector W are eliminated from the atom matrix. The number

of independent chemical reactions is equal to C = n − R. The C independent, but non-unique

stoichiometric vectors are given by the columns of V corresponding to the zero elements of the W

vector.

This method has a number of advantages. Linear stoichiometric constraints can easily be incor-

porated into the atom matrix using a procedure similar to that outlined by Smith and Missen [14].

This method also handles the presence of isomers without modifications to the atom matrix.

Consider the system ethylene, water, ethyl alcohol and dimethyl ether [15] where the alcohol and

ether are isomers. With m = 3 and n = 4, the atom matrix is:









H2O C2H4 C2H5OH C2H6O
C 0 2 2 2
H 2 4 6 6
O 1 0 1 1









(14)

Since the last two columns are the sum of the first two, the rank calculated is 2 and the number of

independent reactions is C = n − R = 2. The calculated stoichiometry of the two independent

chemical reactions are obtained from the V columns corresponding to the zero W elements:

νT =

[

0.632 0.632 −0.316 −0.316
0.000 0.000 −0.707 0.707

]

(15)

which corresponds to the following two (non-unique) reactions,

2C2H4 + 2H2O ⇀↽ C2H5OH + C2H6O (16)

C2H6O ⇀↽ C2H6O (17)

Reaction stoichiometry is an important mass balance constraint. This constraint can be modified

or augmented based on calorimetry measurements to further constrain the yield or conversion of

one or more of all the possible thermodynamically feasible reactions.

7 Standard Gibbs Free Energy Data

A temperature dependent value of Go
i is required for chemical equilibrium estimates. In our imple-

mentation of the direct minimization of the Gibbs free energy, Go
i is calculated for species i from

the formation reaction of species i from its chemical elements. Note that the formation energies

of the chemical elements are usually zero and must to be thermodynamically consistent with the

formation energies of the species being formed.

c©ioMosaic Corporation All Rights Reserved March 17, 2021



8 CALCULATION OF THE CHEMICAL POTENTIAL µ 7

The formation reaction standard free energy data is calculated from the equilibrium constant K
which in turn is calculated from heat capacity data and standard heats and free energies of for-

mation data. The formation reaction equilibrium constant is related to the standard free energy of

reaction by:

Go
i (T ) = −RT lnKi =

M
∑

j=1

νjGj,F (T ) (18)

where M is the number of elements plus one and νj is the stoichiometric coefficient of element j
or species i in the formation reaction of species i.

8 Calculation of the Chemical Potential µ

The chemical potential, µip, of the ith species in a multicomponent mixture is given by:

µip = Go
i + RT ln

f̂ip

f◦
i

(19)

where f◦
i = 1 and the fugacity f̂ip is related to the mole fraction of the ith component in the mixture

by:

f̂ip = φp
i Pxip (20)

where φp
i is the fugacity coefficient and is a function of T , P , and the number of moles of the ith

component in the mixture. Thus,

µip = G◦
i + RT ln

(

Pφp
i

nip

nTp

)

(21)

where nTp =
∑

nip, the total number of moles in the pth phase.

The fugacity coefficient and its derivative are calculated analytically from the MMPR equation of

state [11, 12]. This method has several advantages over the use of traditional activity coefficients

including but not limited to:

1. The activity coefficient model can only approximate nonideality in the liquid phase. An

equation of state is still required for the vapor phase.

2. Activity coefficient models give poor results for systems at high pressure and systems con-

taining supercritical compounds.

The fugacity coefficient φi and its derivatives are obtained directly from the MMPR.
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9 THERMODYNAMIC STABILITY CRITERIA 8

9 Thermodynamic Stability Criteria

We can determine a priori when a mixture is mechanically and/or diffusionally stable if we can

obtain thermodynamic expressions for the chemical potential µ from a suitable equation of state.

The stability criteria can be stated as follows (see [16]):

1. The necessary and sufficient condition for thermodynamic stability in an N component sys-

tem is,

y
(k−1)
kk > 0 k = 1, 2, . . . , (N + 1); (22)

2. All points on the limit of stability obey,

y
(N)
(N+1)(N+1) = 0 (23)

where in thermodynamic notation,

y0
11 =

T

Cv

> 0 (24)

y1
22 = −

(

∂P

∂V

)

T,nj

> 0 (25)

y2
33 . . . y

(N)

(N+1)(N+1) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

∂µ1

∂n1

)

T,P,nj

. . .
(

∂µ1

∂n(N−1)

)

T,P,nj

...
...

...
(

∂µ(N−1)

∂n1

)

T,P,nj

. . .
(

∂µ(N−1)

∂n(N−1)

)

T,P,nj

∣

∣

∣

∣

∣

∣

∣

∣

∣

> 0 (26)

where
(

∂µi

∂nj

)

T,P,ni

= RT

[

∂ lnφi

∂nj

+
1

ni

∂ni

∂nj

−
1

nT

]

(27)

The use of these criterion is simple as analytic derivatives for all terms are available (see [11, 12]).

Equations 24 and 25 represent the locus of points on the binodal curve and the determinant in

equation 26 represents the locus of points on the spinodal curve. If all criterion are positive then

the mixture is stable, and if any of the terms are zero then the mixture is metastable or at its

limit of stability. If any of the criterion is negative then the mixture is unstable and a presence

of an additional phase is indicated. If equations 24 or 25 is negative the mixture is said to be

mechanically unstable (usually high temperature systems) and if the determinant is negative the

the mixture is said to be diffusionally unstable.

10 Phase Splitting and Coalescence

One of the frequently encountered problems in multiphase equilibrium is the determination of the

number of phases and their relative molar distribution at equilibrium. One method is to assume
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11 LIQUID-LIQUID EQUILIBRIUM 9

Table 1: Experimental Liquid-Liquid Miscibility Limits [18, 19]

System ID T, [K] P, [atm] xI
1 xII

1

Butanol-Water 1 365 1.0 0.260 0.045

Isobutanol-Water 2 364 1.0 0.335 0.055

Methyl ethyl ketone-Water 3 346 1.0 0.640 0.045

Ethyl acetate-Water 4 343 1.0 0.700 0.180

Methanol-Hexane 5 323 1.0 0.885 0.155

the maximum number of phases at equilibrium, as given by the phase rule. However, due to the

fixed nature of the constraints of temperature and pressure, the phase rule does not always give the

accurate number of phases at equilibrium. The most popular method is to split a phase into two

trial phases and test to see whether a decrease in the Gibbs free energy is observed over a number

of iterations. But, this procedure can be rather time-consuming and expensive for multicompo-

nent/multiphase systems.

In order to overcome these problems, the stability criterion outlined by Beegle et al [17] and Hei-

demann [16], as outlined earlier, is used to determine, a priori, the feasibility of an additional

phase.

The use of the above outlined stability criterion make the phase splitting algorithm simple. The

minimization is carried out for the phases specified by the user. After convergence, the stabil-

ity criterion is applied to each of the phases. If any of the criterion are violated, an additional

phase is added (usually Liquid). However, if the total number of moles of any phase is below a

predetermined tolerance, that phase is deleted.

For supercritical systems, additional checks are performed to confirm if the converged phase so-

lutions are vapor or liquid. In the case where a converged solution for multiple phases yields the

same compositions, the phases are coalesced. Converged solutions for each unique phase are also

checked for consistency. Depending on the final conditions, a vapor phase may be re-classified as

a liquid phase and coalesced with a liquid phase and vice versa. This is highly dependent on the

MMPR compressibility factor and pseudo critical properties estimates.

11 Liquid-liquid Equilibrium

The use of the stability criterion outlined above is illustrated in predicting liquid-liquid miscibility

limits. Table 1 lists the experimental values for the miscibility limits for five mixtures and Ta-

ble 2 gives the calculated results as well as the binary interaction parameters used for the MMPR

equation of state. As shown, the miscibility limits predicted by the stability criterion are accurate.
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12 CASE STUDIES 10

Table 2: Calculated Miscibility Limits Using Stability Analysis Criterion

ID K12 K21 xI
1 xII

1

1 -0.08891 -0.11033 0.2871 0.0502

2 -0.10760 -0.12039 0.2577 0.0582

3 -0.14961 -0.18254 0.6510 0.0898

4 -0.16851 -0.22598 0.5216 0.0539

5 0.08755 0.19134 0.7554 0.2748

12 Case Studies

SuperChems Expert was tested on a number of case studies. The SuperChems Expert algorithm

automatically scales the objective function and constraints. A convergence tolerance of 1.0× 10−8

kmol was used for all the case studies.

12.1 Ideal Vapor Phase Chemical Equilibrium

SuperChems Expert was tested for the steam reforming system described by White and Seider.

This gas phase chemical equilibrium problem takes place at 1067oK and 1.235 MPa (12.19 atm)

with the following reaction:

CH4 + H2O −→ CO + 3H2 (28)

CO + H2O ⇀↽ CO2 + H2 (29)

Nitrogen is also present in the system as an inert. Under these conditions, the gas mixture can be

assumed to behave ideally. No interaction parameters were used in the MMPR equation of state.

Initial compositions and compositions computed at equilibrium by this work and those reported

by White and Seider are shown in Table 3. The guessed composition for each species was set to

1.0 × 10−3. The stability analysis algorithm reported the phase to be stable with the following

stability criterion values:

−

(

dP

dV

)

= 1.3204 × 10−5

Stability Determinant = 2.5521 × 1011

12.2 Nonideal Two-phase Chemical Equilibrium

Ethanol and acetic acid are esterfied to ethyl acetate and water at 358.2oK and 1.0 atm. This two

phase chemical equilibrium problem was originally solved by Sanderson and Chien, and subse-

quently by George et al. and Gautam and Seider. Sanderson and Chien report a split of 63.01%
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12 CASE STUDIES 11

Table 3: Problem 1: Solution

Initial Solution by Solution by

Species composition White and Seider this work

CH4 15.14 0.875 0.886

H2O 84.07 61.821 61.860

N2 0.59 0.590 0.590

H2 0.20 50.980 50.917

CO 0 6.282 6.298

CO2 0 7.983 7.956

vapor and 36.99% liquid. George et al proved that these values obtained by Sanderson and Chein

to be inconsistent as they did not satisfy the chemical reaction constraints. The equilibrium values

obtained by these authors are shown in Table 4. The reaction taking place is:

C2H6OH + C2H4O2 ⇀↽ C4H8O2 + H2O (30)

with an equimolar initial mixture of ethanol and acetic acid. Since this is a fairly nonideal system,

binary interaction parameters were regressed from binary VLE data. The following values were

used:

kij =









0.0 −0.0911 −0.1690 −0.1400
−0.0911 0.0 0.0319 −0.0315
−0.1690 0.0319 0.0 −0.0218
−0.1400 −0.0315 −0.0218 0.0









(31)

lij =









0.0 0.0500 0.226 0.0604
−0.0500 0.0 0.0389 0.0072
−0.226 −0.0389 0.0 −0.0155
−0.0604 −0.0072 0.0155 0.0









(32)

where (i, j) = water, ethanol, ethyl-acetate and acetic acid. This problem was solved using two

different guesses. In the first run, a guess of 1.0 × 10−3 was used for all the species in all phases.

In the second run, a guess of 1, 49, 1, 49 for water, ethanol, acetate and acid respectively, was used

for the vapor phase and 1.0× 10−3 for all species in the liquid phase. The results obtained by both

runs are given in Table 5. Also shown are the stability analysis data and the minimum obtained

at equilibrium for both runs. As expected, convergence was achieved faster when guesses were

provided for the components in each phases. However, the minimum obtained for each case was

the same.
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12 CASE STUDIES 12

Table 4: Literature reported values for Example 2

Sanderson and Chien George et al Gautam and Seider

Species Initial Vapor Liquid Vapor Liquid Vapor Liquid

H2O 0 16.9205 10.2965 42.4642 < 10−8 42.4639 0.0

C2H6O 50 15.9954 6.7876 7.5353 < 10−8 7.5361 0.0

C4H8O 0 22.1756 5.0415 42.4642 < 10−8 42.4639 0.0

C2H4O2 50 7.9204 14.8625 7.5353 < 10−8 7.5361 0.0

Total 100 63.01 36.99 100.0 < 10−8 100.0 0.0

Table 5: Solution to Example 2

Solution 1† Solution 2‡

Species Vapor Liquid Vapor Liquid

H2O 42.1012 0.2975 42.4637 0.00001

C2H6O 7.5742 0.0272 7.5363 < 10−6

C4H8O 42.3349 0.0637 42.4637 < 10−6

C2H4O2 7.4716 0.1298 7.5363 < 10−6

Total 99.4819 0.5181 99.99998 0.000021

−(dP/DV ) 3.42× 10−7 5.38× 102 3.40× 10−7 1.01× 107

Stability Det. 2.01× 103 9.12× 1010 2.00× 103 2.80× 1024

Gmin/RT -1.74201 -1.74201

† Solution with no guesses.

‡ Solution with guesses.
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12 CASE STUDIES 13

Table 6: Solution to Example 3

2 Phases 3 Phases

Species Vapor Liquid Vapor Liquid 1 Liquid 2

C4H10O < 10−8 0.3 < 10−8 0.2931 0.0069

H2O < 10−8 0.7 < 10−8 0.2955 0.4045

Total < 10−8 1.0 < 10−8 0.5886 0.4114

−(dP/dV ) 1.61× 103 3.47× 102 1.71× 103 3.13× 102 4.29× 103

Stability det. 3.72× 1010 -7.72 3.53× 1010 3.28× 102 5.15× 104

Gmin/RT -1.0111 -1.0243

12.3 Nonideal Three-phase Physical Equilibrium

A mixture of 0.3 mol n-butanol and 0.7 mol water is flashed at 355oK and 1.0 atm. This system is

known to split into two liquid phases under these conditions. This simple flash problem illustrates

the phase splitting algorithm. The following binary interaction parameters were used:

kij =

[

0.0 −0.088799
−0.088799 0.0

]

(33)

lij =

[

0.0 −0.11039
0.11039 0.0

]

(34)

where, (i, j) = n-butanol, water. The minimization calculation was started by assuming two

phases, a vapor and liquid phase. After 3 iterations, the algorithm converged to an answer the

results of which are shown in Table 6. At this point, as the stability determinant for the liquid

phase was negative, the phase splitting algorithm concluded that the phase was unstable and au-

tomatically restarted the calculations by adding an additional liquid phase. The results are given

in Table 6. At equilibrium, the vapor phase is non-existent. It was, however, not necessary to

eliminate this phase at any stage of the calculations as the algorithm does not have any problems

in handling near zero flow rates.

12.4 Nonideal Two-phase Physical Equilibrium

A seven component mixture containing propylene, diisopropyl-ether, isopropanol, water, acetone,

hexene and n-propanol is flashed at 388.5oK and 40.8 atm. This two phase equilibrium problem
was solved by Gautam and Seider. The results obtained by them and by this work are shown in
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12 CASE STUDIES 14

Table 7: Solution to Example 4

Gautam and Seider This work

Species Initial Vapor Liquid Vapor Liquid

Propylene 78.00 77.9805 0.0195 77.9918 0.0082

IPE 2.14 2.1384 0.0016 2.1141 0.0259

IPA 5.06 4.6382 0.3827 4.7571 0.3029

Water 11.90 4.0035 7.8965 5.7613 6.1387

Acetone 0.071 0.0671 0.0039 0.0703 0.0007

Hexene 2.80 2.7999 0.00001 2.7999 0.00002

n-Propanol 0.03 0.0284 0.0016 0.0262 0.0038

Table 7. The following partial list of binary interaction parameters were used for this system:

kij =





















0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.04402 −0.222 0.0 0.0 0.0
0.0 0.04402 0.0 −0.152 0.03401 0.0 −0.00675

0.0 −0.222 −0.152 0.0 −0.096 0.0 −0.11374
0.0 0.0 0.03401 −0.096 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 −0.00657 −0.11347 0.0 0.0 0.0





















(35)

lij =





















0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 −0.053 −0.412 0.0 0.0 0.0

0.0 0.053 0.0 −0.0707 0.01832 0.0 −0.0022
0.0 0.412 0.0707 0.0 0.172 0.0 0.03466

0.0 0.0 −0.01832 −0.172 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0022 −0.03466 0.0 0.0 0.0





















(36)

where, (i, j) = propylene, IPE, IPA, water, acetone, hexene and n-propanol. A partial list was used

due to the availability of binary VLE data for only some systems. Regardless of this limitation, the

results compare favorably with those reported by Gautam and Seider.

12.5 Nonideal Two-phase Chemical Equilibrium

Benzene and hydrogen are reacted at 500oK and 30 atm to form cyclohexane:

C6H6 + 3H2 ⇀↽ C6H12 (37)

for an initial composition containing 1.0, 3.07 and 0.2 moles benzene, hydrogen and cyclohexane

respectively. This two phase chemical equilibrium problem is taken from Henley and Rosen. The
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Table 8: Solution to Example 5

Species Initial (kmol) Vapor (kmol) Liquid (kmol)

C6H6 1.00 0.000002 0.000007

H2 3.07 0.053742 0.016287

C6H12 0.20 0.172855 1.027136

Total 4.27 0.226599 1.043431

binary interaction parameters used were:

kij =





0.0 −2.62717 0.02413
−2.62717 0.0 −2.95736

0.02413 −2.95736 0.0



 (38)

lij =





0.0 −0.55343 −0.00211
0.55343 0.0 0.66357
0.00211 −0.66357 0.0



 (39)

A guess of 1.0 × 10−3 was used for all components in all phases. The results obtained are shown

in Table 8.

13 Conclusions

The stream utilities in SuperChems Expert were upgraded to enable the user to select direct mini-

mization of the Gibbs free energy as a method for performing vapor/liquid/liquid/solid equilibrium

calculations instead of the standard flash routines default. This new option is available for isother-

mal flash calculations, constant volume calculations, user defined vapor quality calculations, and

also for stream flow calculations using either an isentropic or isenthalpic thermodynamic path.

The standard flash routines were also upgraded to enable solids handling and vapor/liquid/solid

equilibrium calculations. These enhancements are very useful when dealing with highly nonideal

systems phase equilibrium and/or when dealing with multiple liquid phases with/without chemical

equilibrium.
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How can we help?

In addition to our deep experience in process

safety management (PSM) and the conduct

of large-scale site wide relief systems evalua-

tions by both static and dynamic methods, we

understand the many non-technical and subtle

aspects of regulatory compliance and legal re-

quirements. When you work with ioMosaic

you have a trusted ISO certified partner that

you can rely on for assistance and support

with the lifecycle costs of relief systems to

achieve optimal risk reduction and PSM com-

pliance that you can evergreen. We invite you

to connect the dots with ioMosaic.

We also offer laboratory testing services

through ioKinetic for the characterization

of chemical reactivity and dust/flammability

hazards. ioKinetic is an ISO accredited, ultra-

modern testing facility that can assist in min-

imizing operational risks. Our experienced

professionals will help you define what you

need, conduct the testing, interpret the data,

and conduct detailed analysis. All with the

goal of helping you identify your hazards, de-

fine and control your risk.

Please visit www.iomosaic.com and www.iokinetic.com to preview numerous publica-

tions on process safety management, chemical reactivity and dust hazards characterization, safety

moments, video papers, software solutions, and online training.
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A Chemical-Physical Equilibrium Equations

The number of variables, equality constraints and total number of constraints are,

NVAR = S + (N − S)π

NMEQ = R

NCON = NVAR + NMEQ

The objective function is,

Gt =

S
∑

i=1

ni

Go
i

RT
+

N−S
∑

i=1

π
∑

p=1

nip

[

Go
i

RT
+ ln

(

Pφip

nip

nTp

)]

and the constraints are,

C1 ≡
S

∑

i=1

akini +
N−S
∑

i=1

π
∑

p=1

akinip = bk k = 1, . . . , NMEQ

C2 ≡ ni ≥ 0 i = 1, . . . , NVAR

The gradient of the objective function and the constraints are,

1. For 0 < i ≤ S,
∂Gt

∂ni

=
Go

i

RT

and

∂C1

∂ni

≡ aki k = 1, . . . , NMEQ

∂C2

∂ni

≡ 1

2. For S < ip ≤ π(N − S), and p = 1, . . . , π

∂Gt

∂nip

=
Go

i

RT
+ ln

(

Pφp
i

nip

nTp

)

+
N−S
∑

j=1

njp

[

∂ lnφp
j

∂nip

+
∂njp

∂nip

1

njp

−
1

nTp

]

and

∂C1

∂nip

≡ aki k = 1, . . . , NMEQ

∂C2

∂nip

≡ 1
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B Physical Equilibrium Equations

The number of variables, equality constraints and total number of constraints are,

NVAR = Nπ

NMEQ = N

NCON = NVAR + NMEQ

The objective function is,

∆Gt =
Gt −

∑N
i=1 no

i G
o
i

RT
=

N
∑

i=1

π
∑

p=1

nip

[

ln

(

Pφip

nip

nTp

)]

and the constraints are,

C1 ≡ no
i −

π
∑

p=1

nip = 0 i = 1, . . . , N

C2 ≡ no
i ≥ nip ≥ 0

The gradient of the objective function and the constraints with respect to the mole number of the

ith species in the pth phase nip are,

∂∆Gt

∂nip

= ln

(

Pφp
i

nip

nTp

)

+
N

∑

j=1

njp

[

∂ lnφp
j

∂nip

+
∂njp

∂nip

1

njp

−
1

nTp

]

and
∂C1

∂nip

≡
∂C2

∂nip

≡ 1

Notice, that since the derivatives of the constraints for both the chemical and physical equilibrium

problems are constant, they are evaluated only once.
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