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Some of the best calorimeters that were developed out of 

need include the accelerating rate calorimeter (ARC®)
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Dow Chemical

Columbia Scientific

Arthur D. Little
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Netzsch



Tools developed by industry also included the automatic 

pressure tracking adiabatic calorimeter (APTAC™)
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Union Carbide

Arthur D. Little
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Netzsch



The ARC is widely used and is considered a work horse 

for runaway reactions characterization
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Rate of self-heating

Time to maximum rate

Rate of pressure rise

Maximum rate of reaction

Kinetic data such as activation energy, reaction 

order and pre-exponential factor

Heat of reaction, heat capacity, vapor pressure, 

and critical properties



The APTAC™ is a low thermal inertia calorimeter which 

provides direct scale up and additional capabilities
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Pressure balancing

Larger test cell and lower thermal inertia

Computer controlled reagent metering

Isothermal and HWS modes

Magnetic stirring

Higher tracking; dT/dt (~400 C/min) 

and dP/dt (~10,000 psi/min)

Simple venting and controlled venting

GC/IR hookups



Test cells used in the ARC and APTAC can be made from 

different metals
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Test-Cell Name Material of 
Construction

Typical Mass 
(g)

Volume at 25°C 
(ml)

Specific Heat 
[J/(kg °C)]

Specific Heat 
[cal/(g °C)]

ARC-FS-2-BC Stainless Steel 316 3 9.5497 452.5 0.1082

APTAC-001 Titanium 33 136.4 519.7 0.1242

APTAC-001A Titanium 55 136.4 519.7 0.1242

APTAC-002 Hastelloy C 118 136.4 365.0 0.0872

APTAC-003 Stainless Steel 316 94 136.4 452.5 0.1082

VSP2 VT2-304-SIL-SN-SN Stainless Steel 304 24.9 110.7 469.2 0.1121

VSP2 VT2-316-SIL-SN-SN Stainless Steel 316 24.8 110.7 452.5 0.1082

VSP2 VT2-HC-SIL-SN-SN Hastelloy C-276 28 110.7 365.0 0.0872

VSP2 Special Order Titanium 14 110.7 519.7 0.1242

Test cell volume should include additional volume of tubing and valve(s). For ARC this can 

be equivalent to 0.48 ml approximately.



Test cell volume may need to be corrected for expansion 

because of high pressures and temperatures
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Source: G. A. Melhem, “Thermal Relief Requirement for Liquids”, White Paper, ioMosaic Corporation, 2017



Using heat-wait-search method or isothermal aging, we can 

extract a myriad of useful data from both calorimeters
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The initial non-reaction data collected is just as valuable 

as the exotherm data
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50 % 

dicumyl

peroxide in 

toluene

Source: SuperChems Expert



The initial non-reaction data represents valuable VLE data
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50 % 

dicumyl

peroxide 

in toluene

Source: SuperChems Expert



Both ARC and APTAC can produce valuable VLE and 

vapor pressure data
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APTAC data 

for 40 % 

dicumyl

peroxide in 

ethylbenzene

Source: SuperChems Expert



We have used the ARC and APTAC to develop and confirm 

VLE data, vapor pressure data, and critical properties
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Acetone/Water

kij=  -0.176, lij= -0.142

Water/Nitrogen

kij=  -0.982, lij= -0.011

Acetone/Nitrogen

kij= -0.168, lij = -0.002

Source: SuperChems Expert



VLE is critically important for pressure relief systems 

design and evaluation, especially for non-ideal systems
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Once VLE is established for reactants, kinetic models can 

be developed for one or more reactions (dicumyl peroxide)
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Multiple indicators are needed for a proper kinetic model 

(50 % dicumyl peroxide in toluene is shown below) 
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These type of estimates extend to all kinds of different 

chemistries such as polymerizations for example
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The examples below shows kinetic and inhibitor model 

development for butyl acrylate
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Note, the starting and final phases during HWS and 

runaway conditions change as does the phase envelope
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It is possible for the ARC/APTAC test cells to become liquid full during runaway if large 

samples are used



The impact of external heating or fire exposure on reaction 

rates is highly non-linear and requires dynamic modeling
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Data is for hydrogen peroxide / 

water system

Source: SuperChems 

Expert



In addition to VLE and kinetic models, many useful thermal 

stability indicators can be obtained from ARC/APTAC data
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Inhibitor induction time and Induction time for autocatalytic reactions

Detected onset temperature

Adiabatic temperature rise

Heat of reaction

Maximum adiabatic temperature due to reaction

Maximum reaction pressure

Time to maximum rate

Power density

Temperature of no return and self accelerating reaction temperature



The impact of inhibitors or autocatalytic behavior must be 

quantified and considered
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Inhibitor induction time should be considered in the 

evaluation of potential reaction hazards
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Impact of TBC concentration on styrene monomer stability
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Autocatalytic reactions can only be thermally stable for a 

specific time duration depending on temperature
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The detected onset temperature cannot be used directly 

and should be corrected for thermal inertia
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The thermal inertia and test apparatus sensitivity can have 

a significant impact on measured reaction data
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The detected onset temperature can be quickly corrected 

for thermal inertia for single stage reactions
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Measured data can also be corrected for thermal inertia for 

simple single stage reactions
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It is always prudent to calculate the expected adiabatic 

temperature rise
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The heat of reaction can easily be corrected for thermal 

inertia
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The maximum adiabatic temperature due to reaction 

should be calculated for desired and undesired reactions

31© ioMosaic Corporation



The maximum reaction pressure without venting can also 

be estimated from measured calorimetry data
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The time to maximum rate is needed to establish safe 

operating limits
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Zero Order

A rule of thumb



Another useful thermal stability indicator is power density
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The temperature of no return is the absolute maximum 

safe operating limit
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The temperature of no return can be estimated from 

adiabatic calorimetry data
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The self accelerating reaction temperature is the lowest 

ambient or heat transfer fluid temperature above which 

equilibrium is lost
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Semenov

Kamenetskii

Zero Order



Simple reaction models (isoconversion), assume that 

conversion of reactants is only a function of temperature
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Differential scanning calorimetry can also be used to 

develop simple isoconversion kinetic models
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The ARC / APTAC calorimeters provide critical thermal 

stability and kinetic rate data for compliance, design, and 

process optimization
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Required process safety information (PSI) for PSM regulated facilities

Safe operating limits

Process optimization

Emergency relief systems design and evaluation

Vent containment design and evaluation

Chemical compatibility information

Safe storage and transport



Some additional resources are available upon request
G. A. Melhem. and E. S. Shanley, "The Oxygen Balance For Thermal Hazards Assessment", Process Safety Progress, Vol.14, No. 1, 1995. 

Paper also appeared in Plant Safety, pp. 153, AIChE

E. S. Shanley and G. A. Melhem, “A review of ASTM CHETAH 7.0 hazard evaluation criteria”, Journal of Loss Prevention in the Process 

Industries, Vol. 8, No. 5, Pages 261-264, 1995. 

G. A. Melhem, H.G. Fisher and D.A. Shaw, "An Advanced Method for the Estimation of Reaction Kinetics, Scale-up and Pressure Relief 

Design", Process Safety Progress, Vol 14, No. 1, 1995.

G. A. Melhem and E. S. Shanley, “On The Estimation of Hazard Potential For Chemical Substances”, Process Safety Progress, Vol. 15, No. 3, 

Pages 168-172, 1996.

G. A. Melhem, “A Detailed Method For The Estimation of Mixture Flammability Limits Using Chemical Equilibrium”, Process Safety Progress, 

Vol. 16, No. 4, December 1997.

G. A Melhem,, “An Experimental Study of Organic Peroxide Hazards”, Paper Presented at the AIChE DIERS User’s Group Meeting, October 

21, 1998.

G. A. Melhem, “Systematic Evaluation of Chemical Reaction Hazards”, proceedings of the 2nd International Symposium on Runaway reactions, 

Pressure Relief Design and Effluent Handling, Pages 399-443,  AIChE, Feb. 1998.

E. S. Shanley and G. A. Melhem, “A review and critique of ASTM CHETAH 4th Edition, version 7.2”, Journal of Loss Prevention in the Process 

Industries, Vol. 13, Pages 67-68, 2000.

J. Sharkey, G. Gruber and D. Muzzio, “Prediction of the flammability range for chemical systems using Aspen”, Paper presented at the AIChE

DIERS User’s Group Meeting, October 2, 2002.
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For more information, please contact
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G. A. Melhem, Ph.D., FAIChE

melhem@iomosaic.com

mailto:melhem@iomosaic.com


About ioMosaic Corporation

Through innovation and dedication to continual improvement, ioMosaic has become a 

leading provider of integrated process safety and risk management solutions. ioMosaic

has expertise in a wide variety of areas, including pressure relief systems design, process 

safety management, expert litigation support, laboratory services, training, and software 

development. 

ioMosaic offers integrated process safety and risk management services to help you 

manage and reduce episodic risk. Because when safety, efficiency, and compliance are 

improved, you can sleep better at night. Our extensive expertise allows us the flexibility, 

resources, and capabilities to determine what you need to reduce and manage episodic 

risk, maintain compliance, and prevent injuries and catastrophic incidents.

Our mission is to help you protect your people, plant, stakeholder value, and our planet. 

For more information on ioMosaic, please visit:  www.ioMosaic.com
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