IONOSCIC[®]

Minimizing risk. Maximizing potential.®

January 24-25, 2022 | 16th Annual Global Software Users Group Meeting | Virtual

Master Explosion Dynamics with SuperChems[™]

G. A. Melhem, Ph.D., FAIChE melhem@iomosaic.com

© ioMosaic Corporation

Any information contained in this document is copyrighted, proprietary, and confidential in nature belonging exclusively to ioMosaic Corporation. Any reproduction, circulation, or redistribution is strictly prohibited without explicit written permission of ioMosaic Corporation.

QMS 7.3 7.4.F06 Rev.9

Meet your presenter

- Over 30 years of Engineering and Process Safety Experience
- Pressure Relief and Flare Systems
- **PRV Stability and Fluid Dynamics**
- **Chemical Reaction Systems**
- Fire, Explosion, and Dispersion Dynamics
- Quantitative and Transportation Risk Analysis
- LNG, LPG, and Hydrogen Safety
- Process Safety Management
- Litigation Support & Public Testimony

G. A. Melhem, Ph.D., FAIChE President and CEO

In this presentation we will learn about useful fundamental SuperChems explosion building blocks and models

- Equilibrium calculations for multiphase and hybrid systems to represent the flame font
- Single volume deflagration dynamics
- Rankine-Hugoniot modeling to develop reduced analytical models for 1D dynamics
- Detailed 1D explosion dynamics
- Example Case studies

Vapor Cloud Explosion: TNT Equivalence Vapor Cloud Explosion: TNO Shockwave Vapor Cloud Explosion: TNO Multienergy Vapor Cloud Explosion: Baker-Strehlow

Vessel Burst: Vapor

Vessel Burst: Two Phase

Vessel Burst: Fragment Trajectory

Vapor and Dust Deflagration in Vessels (Dynamic)

•• Hugoniot. Last Executed: 11:18:07 AM, Sat Jan 08 2022

ID Explosion Dynamics. Last Executed: 03:57:19 PM, Fri Jan 21 2022

NFPA-68: Venting Deflagrations of Dusts and Hybrid Mixture

NFPA-68: Venting Deflagrations of Gas Mixtures and Mists

High Pressure Relief Design for Vapor - BM

High Pressure Relief Design for Vapor - Reduced Set Point

This presentation is based in part on this recent ioMosaic white paper (available for download)

C	ontents	
1	Introduction	3
2	What is An Explosion Severity Index ?	3
3	How do We Measure the Explosion Severity Index?	4
4	How Do We Correlate Explosion Severity with Burning Rate?	5
5	Explosion Severity Index Testing Apparatus	6
6	Anatomy of Deflagration Venting Dynamics	7
7	Detailed Modeling of Deflagration Venting Dynamics	8
8	Burning Rate Model Development and Fitting	10
9	Estimation of Energy Loss to Vessel Walls	12
10	Case Study - Energetic Dust Burning Rate Model Development	13
11	Case Study - Deflagration Venting for Large-Scale Battery Energy Storage Systems	14
12	Pressure Pileup Considerations	16
13	Understanding Dust Explosions and Hazards	17
14	Conclusions	18

G. A. Melhem, Ph.D., FAIChE

melhem@iomosaic.com

This presentation is also based on this additional recent ioMosaic white paper (available for download)

C	ontents	
1	Introduction	1
2	Steady One Dimensional Flow	1
3	The Rayleigh Line Equation	
4	The Rankine-Hugoniot Equation	2
5	Working Fluid - Heat Addition Model	4
6	Chemical Equilibrium Considerations	
7	Working Fluid - Heat Addition Model Parameters Estimation	9
8	The Zeldovich, von Neumann, Döring (ZND) Theory	11
9	Example: Methane-Air Rankine-Hugoniot	12
10	SuperChems Expert Solution	12
11	Conclusions	13

Development of Reduced Analytical Models for Explosion Dynamics

An ioMosaic Corporation White Paper

G. A. Melhem, Ph.D., FAIChE melhem@iomosaic.com

Case Study A – One Dimensional Explosion Dynamics

It is best to illustrate the use of SuperChems one-dimensional (1D) explosion dynamics using an example

- Flow starts at the right boundary at 10 ms and is terminated at 100 ms
- Flame 1 ignites at 15 ms and starts at location 12.9 m and propagates to the left
- Flame 2 ignites at 25 ms and starts at location 0.1 m and propagates to the right
- Both flames are allowed to accelerate in the piping starting with laminar burning

ert v11

ioMosaic®

We notice that one of the flames accelerates from a deflagration to a detonation (DDT)

1D Explosion Dynamics Data >>> C:\ZTEMP\RUN-E-0-1000.OUT

Х

Notice the flames proceeding towards the change in flow area

There is nothing simple about what is happening inside this piping configuration during the explosion

The explosion imparts substantial dynamic loads on the piping

The initial mass flow was not sufficient to provide any kind of meaningful venting or pressure relief

The flame acceleration methods used are semi-empirical and based on actual measurements

Both flames proceed in opposite directions and meet at 5 m

Flame acceleration is modeled based on a semi-empirical correlation Figure 4: Flame speed of flammable materials in a 0.15 m diameter tube [18]

2000

Figure 5: Comparison between measured and calculated flame speeds [18] using Equation 23

© ioMosaic Corporation

[18] M. Silvestrini, B. Genova, G. Parisi, and F. J. Leon Trujillo. Flame acceleration and ddt runup distance for smooth and obstacle filled tubes. Journal of Loss Prevention in the Process Industries, 21:555-562, 2008.

$$.5\sigma \exp\left[0.0061\left(\sigma-1\right)\left(1+15BR\right)\left(\frac{x}{D}\right)\left(\frac{D}{0.15}\right)^{0.4}\right]$$

ioMosa

Case Study B – Single Volume Explosion Dynamics for an Energetic Dust

We consider the explosion severity data for an energetic dust measured in a 20-liter sphere

- Dust contains an inert material
- Data reported included K_{st}, P_{max}, and dP/dt_{max}
- Data included tests for 500, 750, and 1000 g/m³ dust concentrations
- Explosion severity parameters were established at an initial temperature of 25 C and an initial pressure of 1 bar

	Material A	Material B							Flame	
	Concentation	Concentration	Material B				Equivalence		Temperature	
	(g/m3)	(g/m3)	Mass (g)	Pmax (bar)	dP/dt (bar/s)	Kst (bar.m/s)	Ratio	Sfo	(C)	
Measured	500	200	3.937	6.88	2274	617				
Predicted				7.73	2325	627	1.966	2.10	1383	
Measured	750	300	5.905	7.04	2628	713				
Predicted				6.95	2623	709	2.946	2.75	1234	
Mesured	1000	400	7.874	6.93	2995	813				
Predicted				6.92	3041	821	3.704	3.25	1158	

We simulated the 20-liter dust explosion dynamics for 500, 750, and 1000 g/m³ concentrations

Excellent agreement is obtained between measured and predicted data

- The estimated laminar burning velocity was found to have a linear dependence on equivalence ratio: $s_{\mu 0} = 0.80 + 0.67 * \Phi$
- The measured data contains fuel rich compositions (500, 750, and 1000 g/m^3)

The average temperatures of interest in the process are > 300 C. As a result, the measured dust data can only be used for explosion venting using the temperature dependent burning velocity model established by the model above.

This simulation of the explosion process in the 20-liter sphere with 750 g/m³ shows the compression and flame acceleration

ioMoso

The developed model is then used to obtain the maximum permissible equipment dust loading

- Volume = 0.05 m³; $T_0 = 300$ C; $P_0 = 1$ bara; Two 10 cm OD open pipe connections
- The pressure built up during an explosion will be less than 1 barg with a dust concentration of 100 g/m³
- NFPA-68 allows a maximum deflagration pressure such that 2/3 of the ultimate tensile strength of the vessel metal is not exceeded

Case Study C – Single Volume Explosion Dynamics for an Energy Storage System

A runaway reaction in a lithium-ion battery can lead to the formation of flammable gas

© ioMosaic Corporation

$$s_{u_o} = 0.35$$

 $s_f = (\chi + \eta) s_{u_o} \left[\frac{T_u}{T_o} \right]^{2.18} \left[\frac{P}{P_o} \right]^{-0.17}$

This burning rate model was obtained from published data (Tables provided in companion white paper)

Source: Barowy A, "Large Scale Testing of Energy Storage Systems; Fire Protection and Response Considerations", March 2019

Typical burning velocities of saturated hydrocarbons at 25 C air-fuel temperature and 1 atm in air

			E	quivalen	ce Ratio	ϕ			S_u	in cm/s	T and	P Exponents
Chemical	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	S_{max}	ϕ at S_{max}	α	β
Ethane	30.60	36.00	40.60	44.50	47.30	47.30	44.40	37.40	47.60	1.14	2.07	-0.14
	22.00	29.00	36.50	42.50	43.00	42.50	40.00	27.50				
Propane			42.30	45.60	46.20	42.40	34.30		46.40	1.06	2.13	-0.16
	24.00	32.00	39.50	44.00	45.00	43.50	37.00	28.00				
	23.00	30.00	37.00	39.00	41.00	40.50	33.50	25.00				
n-Butane		38.00	42.60	44.80	44.20	41.20	34.40	25.00	44.90	1.03	2.16	-0.16
Methane		30.00	38.30	43.40	44.70	39.80	31.20		44.80	1.08	2.12	-0.15
	20.50	28.00	36.00	40.50	42.00	37.00	27.00	17.50				
	17.00	25.00	33.00	38.00	38.50	34.00	24.00	13.50				
n-Pentane		35.00	40.50	42.70	42.70	39.30	33.90		43.00	1.05	2.14	-0.16
n-Heptane		37.00	39.80	42.20	42.00	35.50	29.40		42.80	1.05	2.14	-0.16
2,2,4-Trimethylpentane		37.50	40.20	41.00	37.20	31.00	23.50		41.00	0.98	2.20	-0.17
2,2,3-Trimethylpentane		37.80	39.50	40.10	39.50	36.20			40.10	1.00	2.18	-0.17
2,2-Dimethylbutane		33.50	38.30	39.90	37.00	33.50			40.00	0.98	2.20	-0.17
Isopentane		33.00	37.60	39.80	38.40	33.40	24.80		39.90	1.01	2.17	-0.17
2,2-Dimethylpropane			31.00	34.80	36.00	35.20	33.50	31.20	36.00	1.10	2.10	-0.15

Exponents α and β are calculated for ϕ at S_{max} according to [10] and [11]

Dynamic modeling of a deflagration in a 33 m³ Energy Storage System (stoichiometric composition) provides an estimate of maximum expected pressure during venting

Fast acting rupture disk

- $C_d = 0.6$ $P_{set} = 1.5 \text{ psig}$
- Vent area = 22.5 ft^2

One Dimensional Explosion Dynamics with SuperChems

When an explosion occurs in a vessel that is interconnected to another, pressure pileup can occur with significant severity

Source: Rogstadkjernet L., "Combustion of Gas in Close, Interconnected Vessels: Pressure Piling", Masters Thesis, University of Bergen, 2004

Working fluid – heat addition reduced models can be derived from steady one-dimensional flow equations

Steady One Dimensional Flow

The Rayleigh Line Equation

$$[\rho_1 u_1]^2 = [\rho_2 u_2]^2 = \frac{P_2 - P_1}{v_1 - v_2}$$
 which is always > 0

Mass:

 $\rho_1 u_1 = \rho_2 u_2$

Momentum:

$$P_1 + \rho_1 u_1^2 = P_2 + \rho_2 u_2^2$$

Energy:

$$h_1 + \frac{1}{2}u_1^2 = h_2 + \frac{1}{2}u_2^2$$

$$e_2 - e_1 = \frac{1}{2} (P_2 + P_1) (v_1 - v_2)$$

ioMosaic[®] 28

Constant volume and CJ conditions can be estimated from these simple relationships

CJ Conditions

$$\frac{P_{CJ}}{P_0} = \frac{1 + \gamma M_{CJ}^2}{\gamma + 1} \qquad M_{CJ} = \sqrt{[\mathcal{H} + 1] \pm \sqrt{[\mathcal{H} + 1]^2 - 1}}$$
$$\frac{T_{CJ}}{T_0} = \left[\frac{P_{CJ}}{P_0}\frac{1}{M_{CJ}}\right]^2 \qquad \mathcal{H} = \frac{\gamma^2 - 1}{\gamma}q$$
$$\frac{\rho_{CJ}}{\rho_0} = \frac{P_0}{P_{CJ}}M_{CJ}^2$$
$$\frac{u_{CJ}}{c_0} = M_{CJ} \text{ or } u_{CJ} = \left(\sqrt{\frac{\gamma P_0}{\rho_0}}\right)M_{CJ}$$

Table 1:	Rankine-Hugoniot	Curves Regression I	Data (stoichiometri	c combustion)
	G	C		

	Heat of Combustion	Heat of Combustion	Best Fit for	Best Fit for	
Fuel	MJ/kg fuel	h. MJ/kg mixture	h/P_1V_1	$q_{rxn}=Q_{rxn}/P_1V_1$	γ
H_2	120.00	3.40	28.86	33.89	1.173
CH ₄	50.01	2.74	30.90	39.27	1.202
C_2H_2	48.22	3.38	39.12	44.79	1.195
C_2H_4	47.16	2.99	34.91	43.29	1.199
C_2H_4O	28.69	3.24	40.78	47.27	1.203
C ₃ H ₈	46.35	2.78	35.68	47.42	1.208

Constant Volume Conditions

$$T_{max} = T_0 + \gamma \left(T_f - T_0\right) \simeq \gamma T_f$$

$$P_{max} = P_0 \left[1 + \gamma \left(\frac{T_f}{T_0} - 1 \right) \right] \simeq \gamma P_0 \left(\frac{T_f}{T_0} \right)$$

$$P_{CJ} \simeq 2P_{max}$$

 $T_{CJ} \simeq \left(\frac{2\gamma}{\gamma+1}\right)T_{max}$

Useful data can be derived from chemical equilibrium estimates before any testing and/or dynamic modeling is performed

В	С	D	E	F	G
Tritial	Constant	Constant	Unner CT	Terrer CT	Mr.
Conditions	Pressure	Volume	upper cu	TOMEL CO	PIW
10,0000	0.0000	0.0000	0.000	0.000	16.0428
18,9000	0.0464	0.1994	0.3698	0.0040	31,9988
71,1000	71.0658	70,9463	70,8086	71.0945	28.0135
	0.9091	0,9091	0,9091	0,9091	28.0104
	9.0909	9.0909	9.0909	9.0909	44.0098
	18.5481	18.0029	17.3865	18.6902	18.0153
	0.0683	0.3072	0.5825	0.0108	30.0061
	0.0000	0.0001	0.0002	0.0000	46.0055
	0.0000	0.0000	0.0000	0.0000	17.0306
	0.0000	0.0000	0.0000	0.0000	63.0129
	1.4519	1.9971	2.6134	1.3098	2.0159
	0.0000	0.0000	0.0000	0.0000	12.0110
298.0000	2263.6497	2704.5169	2953.1210	2003.4541	
1.0132	1.0132	9.3294	18.2150	0.4487	
	7.5961	9.0756	9.9098	6.7230	
	1.0000	9.2074	17.9768	0.4429	
	7.6858				
2756.9652	2756.9652	2756.9652	2756.9652	2756.9652	
100.0000	101.1805	101.4530	101.7611	101.1094	
27.5697	27.2480	27.1748	27.0925	27.2671	
2445.2688	18793.8689	2445.2688	1371.7047	37533.1144	
-748.9470	-748.4574	1284.6269	2533.8720	-1877.4722	
-0.8075	6.5246	5.4429	5.2886	6.6898	
353.0483	929.0435	1015.0350	1061.7637	875.2958	
			1045.7250	906.6945	
			1864.1612	59.0708	

ioMosaic[®]

It has been observed that steady premixed gas detonations tend to propagate at the upper CJ conditions

- Deflagration waves are influenced by finite
 ¹⁰⁰
 reaction and transport rates and are not as
 reliable as CJ detonation velocities
 10-
- A CJ detonation corresponds to an increase in pressure and a decrease in specific volume and is a compression wave
- A CJ deflagration corresponds to a decrease in pressure and an increase in specific volume and is an expansion wave

P/Po

0.1

0.1

P/Po for upper Hugoniot P/Po for lower Hugoniot Pressure ratio at constant pressure Pressure ratio at constant volume Chapman Jouguet pressure ratio P/Po

ioMosaic[®] 3

The Rankine-Hugoniot data is used to develop simple working fluid models for explosion dynamics

$$\gamma = \frac{1+\beta_1}{1-\beta_1}$$

$$q_{rxn} = \frac{Q_{rxn}}{P_1 v_1} = \frac{1}{2} \left[\beta_2 - \frac{4\gamma}{(\gamma+1)^2} \right] \left(\frac{\gamma+1}{\gamma-1} \right)$$

36	** Best Cp/Cv Model Fit	
37	Beta 1	0.1045
38	Beta 2	8.3055
39	Cp/Cv	1.2335
40	Average molecular weight	27.5697
41	Initial speed of sound. m/s	332.9406
42	Initial mass density. kg/m3	1.1275
43	Q - Total Heat Released. MJ/kg of mixture	3.1453
44	q = Q/PIV1	34.9988
45		
46	Predicted upper CJ Mach Number	5.6176
47	Predicted upper CJ pressure ratio	17.8757
48	Predicted upper CJ velocity. m/s	1870.3287
49	Predicted upper CJ mass density. kg/m3	1.9904
50	Predicted upper CJ temperature. K	3017.4641
51		
52	Predicted lower CJ Mach Number	0.1780
53	Predicted lower CJ pressure ratio	0.4652
54		
55	Last Executed: 11:18:07 AM, Sat Jan 08 2022	

ioMosai

We should notice some unique 1D fluid dynamics features of the partial differential equations shown below

Continuity

$$\frac{\partial \tilde{\rho}}{\partial \tilde{t}} = -\frac{1}{\tilde{A}} \frac{\partial}{\partial \tilde{x}} \left[\tilde{\rho} \tilde{u} \tilde{A} \right] + \left[\frac{\dot{m}_{in} - \dot{m}_{out}}{A(x) \Delta x} \right] \frac{t_o}{\rho_o}$$

Momentum

$$\begin{aligned} \frac{\partial \tilde{u}}{\partial \tilde{t}} &= -\frac{1}{\tilde{\rho}} \frac{\partial \tilde{P}}{\partial \tilde{x}} - \tilde{u} \frac{\partial \tilde{u}}{\partial \tilde{x}} - \tilde{g} \sin \theta - \frac{f \tilde{u} |\tilde{u}|}{\sqrt{\frac{\tilde{A}}{\pi}}} - \frac{\tilde{u} |\tilde{u}|}{2} \frac{\partial K}{\partial \tilde{x}} + \nu \frac{\partial^2 \tilde{u}}{\partial \tilde{x}^2} \\ &+ \left[\frac{\dot{m}_{in} u_{in} - \dot{m}_{out} u_{out}}{A(x) \Delta x \rho(x)} \right] \frac{t_o}{c_o} \end{aligned}$$

Equation of state

$$\tilde{P} = \frac{\tilde{\rho}\tilde{Rg}\tilde{T}}{Mw}$$

or

$$\frac{\partial \tilde{P}}{\partial \tilde{t}} \simeq \left(-\frac{\rho u c^2}{A} \frac{\partial A}{\partial x} - u c^2 \frac{\partial \rho}{\partial x} - \rho c^2 \frac{\partial u}{\partial x} + c^2 \left[\frac{\dot{m}_{in} - \dot{m}_{out}}{A(x)\Delta x} \right] \right) \frac{t_o}{P_o}$$

Energy

 $\frac{\partial \tilde{T}}{\partial \tilde{t}}$

$$\begin{split} &= -\tilde{u}\frac{\partial\tilde{T}}{\partial\tilde{x}} + Q\frac{S_u}{dx\tilde{C}_v}\frac{x_o}{c_o^3} - \frac{\tilde{P}}{\tilde{C}_v\tilde{\rho}\tilde{A}}\frac{\partial}{\partial\tilde{x}}\left[Au\right] + \frac{f\tilde{u}^3}{\sqrt{\frac{\tilde{A}}{\pi}\tilde{C}_v}} + \frac{\tilde{u}^3}{2\tilde{C}_v}\frac{\partial K}{\partial\tilde{x}} + \nu\frac{\partial^2\tilde{T}}{\partial\tilde{x}^2} \\ &+ \left[\frac{\dot{m}_{in}\left(h_{in} + \frac{u_{in}^2}{2} + gz_{in}\right) - \dot{m}_{out}\left(h_{out} + \frac{u_{out}^2}{2} + gz_{out}\right)}{A(x)\Delta x\rho(x)c_v}\right]\frac{t_o}{T_o} \\ &- \left[\frac{\pi D(x)}{A(x)\rho(x)c_v}5.67 \times 10^{-8}\left(\frac{\epsilon_b\alpha_w}{\alpha_w + \epsilon_b\alpha_w\epsilon_b -}\right)\left(T^4 - T_s^4\right)\right]\frac{x_o}{c_oT_o} \\ &+ \left[\frac{\pi \tilde{D}(x)U\left(\tilde{T}_s - \tilde{T}\right)}{\rho(x)c_v\tilde{A}(x)}\right]\frac{x_o^2}{A_oc_o} \\ &+ \left[\frac{k}{\rho(x)c_v}\right]\left[\frac{\partial^2\tilde{T}}{\partial\tilde{x}^2} + \frac{1}{\tilde{A}(x)}\frac{\partial\tilde{A}(x)}{\partial\tilde{x}}\frac{\partial\tilde{T}}{\partial\tilde{x}}\right]\frac{1}{x_oc_o} \end{split}$$

SuperChems Single Volume Explosion Dynamics

SuperChems includes several fundamental building blocks for **explosion dynamics**

📴 SuperChems Enterprise, Sc= METHANE COMBUSTION, Ch= METHANE COMB, Im= C:\ztemp\methane combustion.cor - []

Apply Flow NetFlow Control Disperse Burn Explode Report BatchQ Properties VLE Tools QRA Scripts Files Define

C:\ztemp\methane combustion.cor

2 processors allocated

METHANE COMB. Maximum Number of Independent Reactions and Stoichiometry: 5 atoms x 12 components

Atom Matrix (Input): H,C,O,N, cl

```
0.0000 1.0000 0.0000 0.0000 0.0000
                                      C, CARBON-REF
4.0000 1.0000 0.0000 0.0000 0.0000
                                      CH4, METHANE
0.0000 0.0000 2.0000 0.0000 0.0000
                                      O2, OXYGEN
0.0000 0.0000 0.0000 2.0000 0.0000
                                      N2, NITROGEN
0.0000 1.0000 1.0000 0.0000 1.0000
                                      CO, CARBON MONOXIDE
0.0000 1.0000 2.0000 0.0000 -0.1000
                                      CO2, CARBON DIOXIDE
2.0000 0.0000 1.0000 0.0000 0.0000
                                      H2O, WATER
0.0000 0.0000 1.0000 1.0000 0.0000
                                      NO, NITRIC OXIDE
0.0000 0.0000 2.0000 1.0000 0.0000
                                      NO2, NITROGEN DIOXIDE
3.0000 0.0000 0.0000 1.0000 0.0000
                                      H3N, AMMONIA
1.0000 0.0000 3.0000 1.0000 0.0000
                                      HNO3, NITRIC ACID
2.0000 0.0000 0.0000 0.0000 0.0000
                                      H2, HYDROGEN
```

Method 1 - LU Decomposition Atom Matrix Rank = 5

Maximum Number of Independent Chemical Reactions = 7

+0.013 CO +0.131 CO2 +0.575 HNO3 <---> +0.144 CH4 +1.000 O2 +0.288 N2 +0.359 CH4 +0.562 HNO3 <---> +0.281 N2 +0.033 CO +0.327 CO2 +1.000 H2O +0.356 N2 +0.007 CO +0.065 CO2 +0.288 HNO3 <---> +0.072 CH4 +1.000 NO +0.212 N2 +0.013 CO +0.131 CO2 +0.575 HNO3 <---> +0.144 CH4 +1.000 NO2 +0.647 CH4 +0.294 N2 +0.412 HNO3 <---> +0.059 CO +0.588 CO2 +1.000 H3N +0.137 CH4 +0.275 N2 +0.078 CO +0.784 CO2 <---> +1.000 C +0.549 HNO3 +0.431 CH4 +0.275 HNO3 <---> +0.137 N2 +0.039 CO +0.392 CO2 +1.000 H2

Method 2 - Singular Value Decomposition Atom Matrix Rank = 5

Maximum Number of Independent Chemical Reactions = 7

+1.000 C +0.147 02 +0.234 H20 +0.052 NO2 +0.145 H3N +0.206 HNO3 +0.160 H2 <---> +0.357 CH4 +0.190 N2 +0.058 CO +0.585 CO2 +0.022 NO +0.192 N2 +0.022 CO +0.225 CO2 +1.000 H2O +0.003 NO <---> +0.247 CH4 +0.450 O2 +0.042 NO2 +0.180 H3N +0.164 HNO3 +0.153 H2 +0.095 CH4 +1.000 NO +0.000 H2 <---> +0.163 O2 +0.356 N2 +0.009 CO +0.086 CO2 +0.002 H2O +0.097 NO2 +0.092 H3N +0.099 HNO3 +0.397 02 +0.268 N2 +0.016 C0 +0.164 C02 +0.062 H20 +0.128 NO +0.112 H3N +0.224 HNO3 +0.019 H2 <---> +0.180 CH4 +1.000 NO2 +0.049 CO +0.495 CO2 +0.005 NO2 +1.000 H3N <---> +0.544 CH4 +0.332 O2 +0.455 N2 +0.170 H2O +0.035 NO +0.060 HNO3 +0.211 H2 +0.900 02 +0.146 N2 +0.011 CO +0.111 CO2 +0.234 H2O +0.172 NO +0.280 NO2 +0.255 H3N +0.127 H2 <---> +0.122 CH4 +1.000 HNO3 +0.071 N2 +0.028 CO +0.280 CO2 +0.029 NO +0.026 NO2 +1.000 H2 <---> +0.308 CH4 +0.209 O2 +0.129 H2O +0.157 H3N +0.040 HNO3

Ξ

.#

ioMosa

The deflagration dynamics process can be modeled in detail using transient chemical equilibrium estimates

- The gas and/or dust mixture is uniform in composition and the thickness of the flame in the reaction zone is negligible
- The burning rate accelerates when the flame front becomes wrinkled at a critical expansion ratio corresponding to a critical Reynolds number
- Burnt and unburnt gases are treated assuming non-ideal gas behavior using a modified cubic equation of state
- When venting occurs and depending on the location of the vent relative to the flame front, unburnt, burnt, or a mixture of burnt and unburnt materials can be vented
- The burnt and unburnt materials are compressed during the deflagration

Transient chemical equilibrium estimates yield stoichiometry of the reactions as temperature and pressure change

The pressure is uniform in the vessel

- Materials are incrementally reacted using direct minimization of the Gibbs free energy
- The deflagration process is rapid, and therefore the only heat loss mechanism considered is radiation to the vessel walls from combustion
- The final conditions are determined by solving for the pressure and temperatures that satisfy the energy and mass balance constraints at constant volume

+0.857 CO2 +0.143 CH4 +0.286 N2 <---> + C +0.571 HNO3 +0.929 CO2 +0.0714 CH4 +0.143 N2 <---> + CO +0.286 HNO3 +0.143 CO2 +0.571 HNO3 <---> +0.143 CH4 +0.286 N2 + O2 +0.357 CH4 +0.571 HNO3 <---> +0.357 CO2 +0.286 N2 + H2O +0.643 CH4 +0.286 N2 +0.429 HNO3 <---> +0.643 CO2 + H3N +0.0714 CO2 +0.357 N2 +0.286 HNO3 <---> +0.0714 CH4 + NO +0.143 CO2 +0.214 N2 +0.571 HNO3 <---> +0.143 CH4 + NO2 +0.143 CH4 +0.429 HNO3 <---> +0.143 CO2 +0.214 N2 + OH +0.214 CH4 +0.143 HNO3 <---> +0.214 CO2 +0.0714 N2 + H +0.0714 CO2 +0.286 HNO3 <---> +0.0714 CH4 +0.143 N2 + O +0.5 N2 <---> + N +0.429 CH4 +0.286 HNO3 <---> + H2 +0.429 CO2 +0.143 N2

 $\frac{dm_T}{dt} = A_f \rho_u s_f = A_f \rho_u s_u \left(\eta + \chi\right)$

$$\frac{dQ_r}{dt} = -\frac{\sigma A_f \left[T_b^4 - T_w^4\right]}{\frac{1}{\epsilon_b} + \left(\frac{A_f}{A_w}\right) \left(\frac{1}{\alpha_w} - 1\right)}$$

$$V_u \beta_u \frac{dT_u}{dt} + V_b \beta_b \frac{dT_b}{dt} - \left(V_u \kappa_u + V_b \kappa_b\right) \frac{dP}{dt}$$

In addition to measured explosion severity data, formation energies may be necessary and can be measured as needed

Chemical	Measured Heat of Combustion (MJ/kg) [BTU/lb]	CAS #
Benzoic Acid	26.53 [11419.8]	65-85-0
Nicotinic Acid	22.09 [9506.43]	59-67-6
Lycopodium	30.64 [13183.1]	8023-70-9

The heat of formation can be calculated from a measured heat of combustion using an instrument such as the Parr 6200 calorimeter

Deflagration Dynamics Explosion Severity Data and Burning Rate Model Development

Proper modeling of deflagration dynamics requires explosion severity data

- What is an explosion severity index?
- How do we measure the explosion severity index?
- How do we correlate explosion severity with burning rate?
- Explosion severity index testing apparatus
- Understanding Dust Explosions and Hazards
- Anatomy of deflagration venting dynamics
- Detailed modeling of deflagration venting dynamics
- Burning rate model development and fitting

Deflagration vent sizing is usually based on simple, semi-empirical formulas such as those provided by NFPA 68

- Used by US and International Standards
- Applies to simple geometries with L/D < 5</p>
- Additional vent area is required for L/D > 5
- Care must be exercised to avoid deflagration to detonation transitions (DDT)
- Methods exist for addressing vent panel inertia, reaction forces, safe discharge location, etc.
- One must read the fine print regarding applicability and limitations which makes these equations complex to apply at times

41

The propagation of a deflagration depends on ignition location, strength of ignition/explosion, vent location, and overall geometry

What is an explosion severity index?

Source: ioMosaic Corporation

For many hydrocarbon fuel – air and dust – air deflagrations in vessels with low L/D ratios, the maximum deflagration pressure rise rate correlates with volume raised to the 1/3 power

© ioMosaic Corporation

How do we measure the explosion severity index?

- \checkmark K_g or K_{st}
- P_{max}, dP/dt_{max}
- LEL, UEL
- LOC
- MIE
- Tests usually conducted with chemical igniters
- Starting pressure and temperature are usually 1 bar and 25 C

20-liter sphere

Deflagration explosion severity is usually measured in a

The explosion severity index can also be measured in a 1 m³ vessel

- The 20-liter sphere can overdrive the explosion due to the strength of the igniters, i.e., burns materials without flame propagation
- In some cases, the 100-liter sphere can underdrive the explosion due to heat loss to the walls of the sphere which can quench/temper the intensity of the deflagration
- Note that 7 to 15 kgs of sample is required for 1 m³ testing
- Cost and availability of materials?
- Toxicity of combustion products?

45

How do we correlate the explosion severity index with burning rate?

$$K = \left[\frac{dP}{dt}\right]_{\max} V^{1/3} = (36\pi)^{1/3} \left(P_{max} - P_0\right) \left(\frac{P_{max}}{P_0}\right)^{1/\gamma_u} s_f$$

$$s_f = \left(\frac{20 \times 10^{-3}}{36\pi}\right)^{1/3} \left(\frac{1}{8.5}\right)^{1/1.4} \left(\frac{1}{8.5-1}\right) [670]$$

= $5.61 \times 10^{-2} \times 0.216 \times 0.133 \times 670 = 1.09 \text{ m/s}$

$$s_{f_2} = s_{f_1} \left[\frac{K_2}{K_1} \right] \left[\frac{P_{max_1} - P_0}{P_{max_2} - P_0} \right] \left[\frac{\left(\frac{P_{max_1}}{P_0} \right)^{1/\gamma_{u_1}}}{\left(\frac{P_{max_2}}{P_0} \right)^{1/\gamma_{u_2}}} \right]$$
$$\simeq s_{f_1} \left[\frac{K_2}{K_1} \right]$$

Source: ioMosaic Corporation

The explosion severity index is directly related to the burning rate or rate of reaction

ioMosaic[®]

The measured pressure-time data in a 20-liter sphere or 1 m³ vessel can be used to develop a burning rate model

$$s_f = (\chi + \eta) \, s_u = (\chi + \eta) \, s_{u_o} \left[\frac{T_u}{T_o} \right]^{\alpha} \left[\frac{P}{P_o} \right]^{\beta}$$

$$\eta = \left(\frac{N_{Pr}N_{Re}}{N_{Pr_c}N_{Re_c}}\right)^{\theta}$$

Chemical
$$s_a$$
MethanePropanePentaneAcetyleneHydrogenMethanolisoOctane

$_{u_o}, \mathrm{m/s}$	α	β	θ
0.33	2.00	-0.25	0.40
0.32	2.13	-0.17	0.25
0.50	1.60	-0.25	0.39
1.58	2.00	-0.06	0.39
3.50	1.26	0.26	0.39
0.37	2.18	-0.16	0.39
0.26	2.18	-0.16	0.39

ioMosaic

The SuperChems dynamic explosion models provide significant advantages over static and simplified methods

- The explosion models' updates are available in SuperChems Expert v11.0
- Extend the use of limited measured data to elevated temperatures, elevated pressures, different compositions, hybrid systems, and systems with diluents and/or chemical oxidizers
- Determine the composition of the vented material(s)
- Reduce venting requirements with lower relief device set points
- Consider flame acceleration, pressure pileup, and complex geometries

Contact us to learn more about how we can help

Georges A. Melhem, Ph.D., FAIChE President and CEO melhem@iomosaic.com

ioMosaic®

Suggested Additional Reading

- G.A. Melhem, "Quantify explosion venting dynamics in vessels, enclosures, and energy storage systems", ioMosaic Corporation White Paper, 1. December 2021.
- G. A. Melhem, "Development of reduced analytical models for explosion dynamics", ioMosaic Corporation White Paper, January 2022. 2.
- G.A. Melhem, "Proper calculations of pipe and vessel wall temperatures during relief and/or depressurization", In 78th API Fall Refining and 3. Equipment Standards Meeting, pages 221–226, November 2013.
- G. A. Melhem, "Get the most out of your deflagration test data dusts, gases, and hybrid systems", In DIERS Users Group Meeting, AIChE, Spring 4. 2007.
- G. A. Melhem, "Calculate phase and chemical equilibria using Process Safety Office® Superchems Expert[™]. ioMosaic Corporation White Paper, 5. 2021.
- J. Shepherd, G. A. Melhem, and P. Athens, "Unconfined vapor cloud explosions: A new perspective", In International Conference and Workshop on 6. Modeling. AIChE/CCPS, 1991.
- G. A. Melhem, "An overview of explosion modeling for facility siting", In DIERS Users Group Meeting, AIChE, October 2010. 7.
- G. A. Melhem, R. Saini, and B. M. Goodwin, "Computation of complex equilibria by direct minimization of the Gibbs free energy", AIChE, 1989 8. Spring National Meeting and Petrochemical Expo, 1989.
- G.A. Melhem, "A detailed method for the estimation of mixture flammability limits using chemical equilibrium", Process Safety Progress, 16(4), 9. 1997.

ioMos

About ioMosaic Corporation

Through innovation and dedication to continual improvement, ioMosaic has become a leading provider of integrated process safety and risk management solutions. ioMosaic has expertise in a wide variety of areas, including pressure relief systems design, process safety management, expert litigation support, laboratory services, training, and software development.

ioMosaic offers integrated process safety and risk management services to help you manage and reduce episodic risk. Because when safety, efficiency, and compliance are improved, you can sleep better at night. Our extensive expertise allows us the flexibility, resources, and capabilities to determine what you need to reduce and manage episodic risk, maintain compliance, and prevent injuries and catastrophic incidents.

Our mission is to help you protect your people, plant, stakeholder value, and our planet.

For more information on ioMosaic, please visit: www.ioMosaic.com

