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In this presentation we will learn about useful fundamental 
SuperChems explosion building blocks and models
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Equilibrium calculations for multiphase and hybrid 

systems to represent the flame font

Single volume deflagration dynamics 

Rankine-Hugoniot modeling to develop reduced 

analytical models for 1D dynamics

Detailed 1D explosion dynamics

Example Case studies



This presentation is based in part on this recent ioMosaic 
white paper (available for download)
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This presentation is also based on this additional recent 
ioMosaic white paper (available for download)
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Case Study A – One Dimensional Explosion Dynamics



It is best to illustrate the use of SuperChems one-dimensional (1D) 
explosion dynamics using an example
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Flow starts at the right boundary at 10 ms

and is terminated at 100 ms

Flame 1 ignites at 15 ms and starts at 

location 12.9 m and propagates to the left

Flame 2 ignites at 25 ms and starts at 

location 0.1 m and propagates to the 

right

Both flames are allowed to accelerate in 

the piping starting with laminar burning

Source: ioMosaic Corporation, Process Safety Office ® SuperChems Expert v11

Flow Boundary

Flame 2Flame 1



We notice that one of the flames accelerates from a deflagration to a 
detonation (DDT)
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Captured with Snagit 13.1.7.8036  

Microphone - Microphone (Logitech Wireless Headset)







Notice the flames proceeding towards the change in flow area
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Captured with Snagit 13.1.7.8036  

Microphone - Microphone (Logitech Wireless Headset)







There is nothing simple about what is happening inside this 
piping configuration during the explosion
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Captured with Snagit 13.1.7.8036  

Microphone - Microphone (Logitech Wireless Headset)







The explosion imparts substantial dynamic loads on the piping
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The initial mass flow was not sufficient to provide any kind of 
meaningful venting or pressure relief
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The flame acceleration methods used are semi-empirical and based 
on actual measurements
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Both flames proceed in opposite directions and meet at 5 m
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Flame acceleration is modeled based on a semi-empirical 
correlation
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Case Study B – Single Volume Explosion Dynamics for an 
Energetic Dust



We consider the explosion severity data for an energetic dust 
measured in a 20-liter sphere
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Dust contains an inert material

Data reported included Kst, Pmax, and 

dP/dtmax

Data included tests for 500, 750, and 

1000 g/m3 dust concentrations

Explosion severity parameters were 

established at an initial temperature 

of 25 C and an initial pressure of 1 

bar



We simulated the 20-liter dust explosion dynamics for 500, 750, and 
1000 g/m3 concentrations
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Source: ioMosaic Corporation, Process Safety Office ® SuperChems Expert v11



Excellent agreement is obtained between measured and predicted 
data
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The estimated laminar burning 

velocity was found to have a linear 

dependence on equivalence ratio: 

suo = 0.80 + 0.67 * Φ

The measured data contains fuel 

rich compositions (500, 750, and 

1000 g/m3) Concentration. g/m3
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The average temperatures of interest in the process are > 300 C. As a result, the measured 
dust data can only be used for explosion venting using the temperature dependent burning 
velocity model established by the model above.

Source: ioMosaic Corporation, Process Safety Office ® SuperChems Expert v11



This simulation of the explosion process in the 20-liter sphere with 
750 g/m3 shows the compression and flame acceleration

© ioMosaic Corporation 20Source: ioMosaic Corporation, Process Safety Office ® SuperChems Expert v11



The developed model is then used to obtain the maximum 
permissible equipment dust loading
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Volume = 0.05 m3; T0 = 300 C; P0 = 1 bara; 

Two 10 cm OD open pipe connections

The pressure built up during an explosion 

will be less than 1 barg with a dust 

concentration of 100 g/m3

NFPA-68 allows a maximum deflagration 

pressure such that 2/3 of the ultimate 

tensile strength of the vessel metal is not 

exceeded

Source: ioMosaic Corporation, Process Safety Office ® SuperChems Expert v11



Case Study C – Single Volume Explosion Dynamics for an 
Energy Storage System



A runaway reaction in a lithium-ion battery can lead to the formation 
of flammable gas

© ioMosaic Corporation 23

This burning rate model was obtained 
from published data (Tables provided in 
companion white paper)

Source: Barowy A, "Large Scale Testing of Energy Storage Systems; Fire Protection and 
Response Considerations", March 2019



Typical burning velocities of saturated hydrocarbons at 25 C air-fuel 
temperature and 1 atm in air
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Dynamic modeling of a deflagration in a 33 m3 Energy Storage 
System (stoichiometric composition) provides an estimate of 
maximum expected pressure during venting
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Fast acting rupture disk

Cd = 0.6

Pset = 1.5 psig

Vent area = 22.5 ft2

Source: ioMosaic Corporation, Process Safety Office ® SuperChems Expert v11



One Dimensional Explosion Dynamics with SuperChems



When an explosion occurs in a vessel that is interconnected to 
another, pressure pileup can occur with significant severity

© ioMosaic Corporation 27Source: Rogstadkjernet L., "Combustion of Gas in Close, Interconnected Vessels: Pressure Piling", Masters Thesis, University of Bergen, 2004



Working fluid – heat addition reduced models can be derived from 
steady one-dimensional flow equations
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Constant volume and CJ conditions can be estimated from these 
simple relationships
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CJ Conditions Constant Volume Conditions



Useful data can be derived from chemical equilibrium estimates before 
any testing and/or dynamic modeling is performed
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Rankine-Hugoniot Diagram

Source: ioMosaic Corporation, Process Safety Office ® SuperChems Expert v11



It has been observed that steady premixed gas detonations tend to 
propagate at the upper CJ conditions
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Deflagration waves are influenced by finite 

reaction and transport rates and are not as 

reliable as CJ detonation velocities

A CJ detonation corresponds to an 

increase in pressure and a decrease in 

specific volume and is a compression wave

A CJ deflagration corresponds to a 

decrease in pressure and an increase in 

specific volume and is an expansion wave

Source: ioMosaic Corporation, Process Safety Office ® SuperChems Expert v11



The Rankine-Hugoniot data is used to develop simple working fluid 
models for explosion dynamics
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We should notice some unique 1D fluid dynamics features of the 
partial differential equations shown below
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SuperChems Single Volume Explosion Dynamics



SuperChems includes several fundamental building blocks for 
explosion dynamics

© ioMosaic Corporation 35Source: ioMosaic Corporation, Process Safety Office ® SuperChems Expert v11



The deflagration dynamics process can be modeled in detail using 
transient chemical equilibrium estimates
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The gas and/or dust mixture is uniform in composition and the thickness of the flame in 

the reaction zone is negligible

The burning rate accelerates when the flame front becomes wrinkled at a critical 

expansion ratio corresponding to a critical Reynolds number

Burnt and unburnt gases are treated assuming non-ideal gas behavior using a modified 

cubic equation of state

When venting occurs and depending on the location of the vent relative to the flame front, 

unburnt, burnt, or a mixture of burnt and unburnt materials can be vented

The burnt and unburnt materials are compressed during the deflagration



Transient chemical equilibrium estimates yield stoichiometry of the 
reactions as temperature and pressure change
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The pressure is uniform in the vessel

Materials are incrementally reacted using direct 

minimization of the Gibbs free energy

The deflagration process is rapid, and therefore the 

only heat loss mechanism considered is radiation to 

the vessel walls from combustion

The final conditions are determined by solving for the 

pressure and temperatures that satisfy the energy 

and mass balance constraints at constant volume



In addition to measured explosion severity data, formation energies 
may be necessary and can be measured as needed
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Chemical Measured Heat of 
Combustion 
(MJ/kg) [BTU/lb]

CAS #

Benzoic Acid 26.53 [11419.8] 65-85-0
Nicotinic Acid 22.09 [9506.43] 59-67-6
Lycopodium 30.64 [13183.1] 8023-70-9

The heat of formation can be calculated from a measured 
heat of combustion using an instrument such as the Parr 
6200 calorimeter

Source: ioMosaic Corporation



Deflagration Dynamics Explosion Severity Data and 
Burning Rate Model Development



Proper modeling of deflagration dynamics requires explosion severity data
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What is an explosion severity index?

How do we measure the explosion severity index?

How do we correlate explosion severity with burning 

rate?

Explosion severity index testing apparatus

Understanding Dust Explosions and Hazards

Anatomy of deflagration venting dynamics

Detailed modeling of deflagration venting dynamics

Burning rate model development and fitting



Deflagration vent sizing is usually based on simple, semi-empirical 
formulas such as those provided by NFPA 68
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Used by US and International Standards

Applies to simple geometries with L/D < 5

Additional vent area is required for L/D > 5

Care must be exercised to avoid deflagration to 

detonation transitions (DDT)

Methods exist for addressing vent panel inertia, reaction 

forces, safe discharge location, etc.

One must read the fine print regarding applicability and 

limitations which makes these equations complex to 

apply at times



The propagation of a deflagration depends on ignition location, 
strength of ignition/explosion, vent location, and overall geometry

© ioMosaic Corporation 42Source: ioMosaic Corporation



What is an explosion severity index?
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For many hydrocarbon fuel 
– air and dust – air 
deflagrations in vessels 
with low L/D ratios, the 
maximum deflagration 
pressure rise rate 
correlates with volume 
raised to the 1/3 power

Source: ioMosaic Corporation



How do we measure the explosion severity index?
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Kg or Kst

Pmax, dP/dtmax

LEL, UEL

LOC

MIE

Tests usually conducted with 

chemical igniters

Starting pressure and temperature 

are usually 1 bar and 25 C

Deflagration explosion severity is usually measured in a 
20-liter sphere

Source: ioMosaic Corporation



The explosion severity index can also be measured in a 1 m3 vessel
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The 20-liter sphere can overdrive the explosion due to the 

strength of the igniters, i.e., burns materials without flame 

propagation

In some cases, the 100-liter sphere can underdrive the 

explosion due to heat loss to the walls of the sphere which 

can quench/temper the intensity of the deflagration

Note that 7 to 15 kgs of sample is required for 1 m3 testing

Cost and availability of materials?

Toxicity of combustion products?



How do we correlate the explosion severity index with burning rate?
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The explosion severity index is 
directly related to the burning 
rate or rate of reaction

Source: ioMosaic Corporation



The measured pressure-time data in a 20-liter sphere or 1 m3 vessel 
can be used to develop a burning rate model
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Final Thoughts and Conclusions



The SuperChems dynamic explosion models provide significant 
advantages over static and simplified methods
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The explosion models' updates are available in SuperChems Expert v11.0

Extend the use of limited measured data to elevated temperatures, elevated 

pressures, different compositions, hybrid systems, and systems with diluents 

and/or chemical oxidizers

Determine the composition of the vented material(s)

Reduce venting requirements with lower relief device set points

Consider flame acceleration, pressure pileup, and complex geometries



Contact us to learn more about how we can help

50
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melhem@iomosaic.com
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About ioMosaic Corporation

Through innovation and dedication to continual improvement, ioMosaic has become a leading 
provider of integrated process safety and risk management solutions. ioMosaic has expertise 
in a wide variety of areas, including pressure relief systems design, process safety 
management, expert litigation support, laboratory services, training, and software 
development. 

ioMosaic offers integrated process safety and risk management services to help you manage 
and reduce episodic risk. Because when safety, efficiency, and compliance are improved, you 
can sleep better at night. Our extensive expertise allows us the flexibility, resources, and 
capabilities to determine what you need to reduce and manage episodic risk, maintain 
compliance, and prevent injuries and catastrophic incidents. 

Our mission is to help you protect your people, plant, stakeholder value, and our planet. 

For more information on ioMosaic, please visit:  www.ioMosaic.com
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