This manuscript explains the fire phenomena and introduces the different types of industrial fires that should be identified and characterized during the development of a risk-based quantitative assessment; i.e., flash fires, pool fires, jet fires and fireballs. It addresses specific criteria for the following primary fire types with potential for domino effect; i.e., pool and jet fires. An advanced and time efficient quantitative approach is proposed for accurately estimating the Time to Failure (TTF) of process equipment or any other type of structure of interest being impacted by fires. The approach is suitable for ensuring which are the most appropriate risk reduction measures (active and passive) to be considered during the decision-making process and to predict if there is enough time to either prevent or mitigate the fire outcomes with the aim to prevent escalation; i.e., Dynamic Thermal Stress Analysis (DTSA). Fire is the rapid exothermic oxidation of an ignited fuel. The fuel can be in solid, liquid or vapor form. Vapor and liquid fuels are generally easier to ignite. The combustion always occurs in the vapor phase; liquids are volatized and solids are decomposed into vapor before combustion. When fuel, oxidizer and an ignition source are present at the necessary levels, burning will occur [1]. The essential elements for combustion are fuel, an oxidizer and an ignition source; i.e., the fire triangle (see Figure 01). This means a fire will not occur if:
Some of the commonly used definitions associated with fires and explosions are given by reference [1]:
To download our resources, you must become a registered site user. After you register, you will receive an email with a login username and password.